
Lecture 17: Algebraic Closure of Untilts

November 9, 2018

Our goal in this lecture is to prove the following result, which we have used several times without proof:

Theorem 1. Let K be a perfectoid field. If the tilt K[ is algebraically closed, then K is algebraically closed.

We will prove Theorem 1 using an approximation argument which is similar to (but much easier than)
the strategy of the last two lectures. The key point is to prove the following:

Proposition 2. Let K be a perfectoid field such that the tilt K[ is algebraically closed, and let f(x) =
xn + a1x

n−1 + · · · + an ∈ K[x] be a non-constant irreducible polynomial. Let y be an element of K. Then
there exists an element y′ ∈ K satisfying

|y − y′|K ≤ |f(y)|1/nK |f(y′)|K ≤ |pf(y)|K .

Proof of Theorem 1 from Proposition 2. Let K be a perfectoid field such that K[ is algebraically closed. We
assume that K has characteristic zero (otherwise there is nothing to prove). We wish to show that K is
algebraically closed: that is, that every non-constant polynomial f(x) ∈ K[x] has a root in K. Without loss
of generality, we may assume that f(x) is monic and irreducible of degree n > 0. Replacing f(x) by pndf( x

pd
)

for d� 0, we may assume that the coeffcients of f belong to OK . Setting y0 = 0, it follows that f(y0) ∈ OK ,
or equivalently that |f(y0)|K ≤ |p0|K . Applying Proposition 2, we deduce that there exists y1 ∈ K satisfying

|y0−y1|K ≤ |f(y0)|1/nK ≤ |p0|1/nK and |f(y1)|K ≤ |pf(y0)|K ≤ |p|K . Applying Proposition 2 to the element y1,

we obtain an element y2 ∈ OK satisfying |y1 − y2|K ≤ |f(y1)|1/nK ≤ |p|1/nK and |f(y2)|K ≤ |pf(y1)|K ≤ |p2|K .
Proceeding in this way, we obtain a sequence of elements y0 = 0, y1, y2, . . . ∈ K satisfying

|ym − ym+1|K ≤ |pm|1/nK |f(ym)|K ≤ |pm|K .

It follows from the first inequality (and the completeness of K) that the sequence {ym} converges to an
element y ∈ K. Then

|f(y)|K = lim
m→∞

|f(ym)|K = 0,

so that y is a root of f .

For the proof of Proposition 2, we will use the following result from the theory of valued fields:

Theorem 3. Let K be a field which is complete with respect to a non-archimedean absolute value | • |K , and
let L be a finite extension field of K. Then | • |K can be extended uniquely to an absolute value on the field
| • |L.

Remark 4. In the situation of Theorem 3, the absolute value | • |L is given concretely by the formula

|x|L = |NL/K(x)|1/deg(L/K)
K ,
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where NL/K : L→ K denotes the norm map and deg(L/K) denotes the degree of the field extension K ↪→ L.
To prove this, we are free to enlarge L and may thereby assume that L is a normal extension of K. In this
case, we can write

NL/K(x) = (
∏

γ∈Gal(L/K)

γ(x))d0 ,

where d0 is the inseparable degree of L over K. We therefore have

|NL/K(x)|1/deg(L/K)
K = (

∏
γ∈Gal(L/K)

|γ(x)|L)1/|Gal(L/K)|.

The desired identity then follows from formula |x|L = |γ(x)|L for γ ∈ Gal(L/K) (by virtue of the uniqueness
asserted in Theorem 3).

Warning 5. In the situation of Theorem 3, one cannot drop the assumption that K is complete. If K is
not complete, then the norm | • |K can generally be extended in many different ways to extension fields L

over K, and the formula |x|L = |NL/K(x)|1/deg(L/K)
K of Remark 4 need not define an absolute value on L.

Corollary 6. Let K be a field which is complete with respect to a non-archimedean absolute value | • |K ,
and let f(x) = xn + a1x

n−1 + · · · + an be an irreducible polynomial with coefficients in K. If an belongs to
OK , then each ai belongs to OK .

Proof. Let L be a finite normal extension of K over which the polynomial f(x) factors as a product f(x) =
(x − r1) · (x − r2) · · · (x − rn). Equip L with the absolute value | • |L of Theorem 3. Since the roots ri are
conjugate by the action of the Galois group Gal(L/K), they must all have the same absolute value; that is,
there exists a real number λ satisfying |ri|L = λ for all i. Then an = (−1)n

∏n
i=1 ri. Consequently, if an

belongs to OK , then each ri belongs to OL. It follows that the polynomial

f(x) =

n∏
i=1

(x− ri)

has coefficients in OL, so that each ai belongs to OL ∩K = OK as desired.

Proof of Proposition 2. Let K be a perfectoid field such that the tilt K[ is algebraically closed, and let
f(x) = xn + a1x

n−1 + · · ·+ an ∈ K[x] be a non-constant irreducible polynomial. We wish to show that, for
each element y ∈ K, we can find another point y′ ∈ K satisfying

|y − y′|K ≤ |f(y)|1/nK |f(y′)|K ≤ |pf(y)|K .

Replacing f(x) by the polynomial f(x+ y), we can reduce to the case y = 0; in this case, we wish to show
that there exists y′ ∈ K satisfying

|y′|K ≤ |f(0)|1/nK |f(y′)|K ≤ |pf(0)|K .

Let us assume that f(0) 6= 0 (otherwise, we can take y′ = 0 and there is nothing to prove). Note that the
value group of K is the same as the value group of K[, and is therefore divisible (since K[ is algebraically

closed). We can therefore choose an element c ∈ K satisfying |c|K = |f(0)|1/nK . In this case, we can rewrite
the inequalities above as

|y
′

c
|K ≤ 1 | 1

cn
f(c · y

′

c
)|K ≤ |p|K .

Replacing f(x) by the monic polynomial 1
cn f(cx) (and y′ by y′

c ), we can reduce to the case where |f(0)|K = 1.
In this case, we wish to show that there exists y′ ∈ K satisfying

|y′|K ≤ 1 |f(y′)|K ≤ |p|K .
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Write f(x) = xn + a1x
n−1 + · · · + an. Our assumption that |f(0)|K = 1 guarantees that an belongs to

OK . Applying Corollary 6, we see that each of the coefficients ai belongs to OK . We can therefore choose
elements bi ∈ O[K satisfying b]i ≡ ai (mod p). Set

g(x) = xn + b1x
n−1 + b2x

n−2 + · · ·+ bn ∈ K[[x].

Since K[ is algebraically closed, the polynomial g(x) factors as a product

g(x) = (x− r1) · · · (x− rn)

for some r1, r2, . . . , rn ∈ K[. Note that we have

|r1|K[ · · · |rn|K[ = |(−1)nbn|K[ ≤ 1.

It follows that there must exist r ∈ {r1, . . . , rn} satisfying |r|K[ ≤ 1, so that r belongs to O[K . Setting
y′ = r], we have |y′|K = |r|K[ ≤ 1, and

f(y′) = y′n + a1y
′n−1 + · · ·+ an

≡ y′n + b]1y
′n−1 + · · ·+ b]n (mod p)

= (r])n + b]1(r])n−1 + · · ·+ b]n

≡ (g(r))] (mod p)

= 0

so that |f(y′)|K ≤ |p|K , as desired.
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