Lecture 17: Algebraic Closure of Untilts

November 9, 2018

Our goal in this lecture is to prove the following result, which we have used several times without proof:
Theorem 1. Let K be a perfectoid field. If the tilt K^{b} is algebraically closed, then K is algebraically closed.
We will prove Theorem 1 using an approximation argument which is similar to (but much easier than) the strategy of the last two lectures. The key point is to prove the following:

Proposition 2. Let K be a perfectoid field such that the tilt K^{b} is algebraically closed, and let $f(x)=$ $x^{n}+a_{1} x^{n-1}+\cdots+a_{n} \in K[x]$ be a non-constant irreducible polynomial. Let y be an element of K. Then there exists an element $y^{\prime} \in K$ satisfying

$$
\left|y-y^{\prime}\right|_{K} \leq|f(y)|_{K}^{1 / n} \quad\left|f\left(y^{\prime}\right)\right|_{K} \leq|p f(y)|_{K}
$$

Proof of Theorem 1 from Proposition 2. Let K be a perfectoid field such that K^{b} is algebraically closed. We assume that K has characteristic zero (otherwise there is nothing to prove). We wish to show that K is algebraically closed: that is, that every non-constant polynomial $f(x) \in K[x]$ has a root in K. Without loss of generality, we may assume that $f(x)$ is monic and irreducible of degree $n>0$. Replacing $f(x)$ by $p^{n d} f\left(\frac{x}{p^{d}}\right)$ for $d \gg 0$, we may assume that the coeffcients of f belong to \mathcal{O}_{K}. Setting $y_{0}=0$, it follows that $f\left(y_{0}\right) \in \mathcal{O}_{K}$, or equivalently that $\left|f\left(y_{0}\right)\right|_{K} \leq\left|p^{0}\right|_{K}$. Applying Proposition 2, we deduce that there exists $y_{1} \in K$ satisfying $\left|y_{0}-y_{1}\right|_{K} \leq\left|f\left(y_{0}\right)\right|_{K}^{1 / n} \leq\left|p^{0}\right|_{K}^{1 / n}$ and $\left|f\left(y_{1}\right)\right|_{K} \leq\left|p f\left(y_{0}\right)\right|_{K} \leq|p|_{K}$. Applying Proposition 2 to the element y_{1}, we obtain an element $y_{2} \in \mathcal{O}_{K}$ satisfying $\left|y_{1}-y_{2}\right|_{K} \leq\left|f\left(y_{1}\right)\right|_{K}^{1 / n} \leq|p|_{K}^{1 / n}$ and $\left|f\left(y_{2}\right)\right|_{K} \leq\left|p f\left(y_{1}\right)\right|_{K} \leq\left|p^{2}\right|_{K}$. Proceeding in this way, we obtain a sequence of elements $y_{0}=0, y_{1}, y_{2}, \ldots \in K$ satisfying

$$
\left|y_{m}-y_{m+1}\right|_{K} \leq\left|p^{m}\right|_{K}^{1 / n} \quad\left|f\left(y_{m}\right)\right|_{K} \leq\left|p^{m}\right|_{K}
$$

It follows from the first inequality (and the completeness of K) that the sequence $\left\{y_{m}\right\}$ converges to an element $y \in K$. Then

$$
|f(y)|_{K}=\lim _{m \rightarrow \infty}\left|f\left(y_{m}\right)\right|_{K}=0
$$

so that y is a root of f.
For the proof of Proposition 2, we will use the following result from the theory of valued fields:
Theorem 3. Let K be a field which is complete with respect to a non-archimedean absolute value $|\bullet|_{K}$, and let L be a finite extension field of K. Then $|\bullet|_{K}$ can be extended uniquely to an absolute value on the field $|\bullet| L$.

Remark 4. In the situation of Theorem 3, the absolute value $|\bullet|_{L}$ is given concretely by the formula

$$
|x|_{L}=\left|N_{L / K}(x)\right|_{K}^{1 / \operatorname{deg}(L / K)}
$$

where $N_{L / K}: L \rightarrow K$ denotes the norm map and $\operatorname{deg}(L / K)$ denotes the degree of the field extension $K \hookrightarrow L$. To prove this, we are free to enlarge L and may thereby assume that L is a normal extension of K. In this case, we can write

$$
N_{L / K}(x)=\left(\prod_{\gamma \in \operatorname{Gal}(L / K)} \gamma(x)\right)^{d_{0}}
$$

where d_{0} is the inseparable degree of L over K. We therefore have

$$
\left|N_{L / K}(x)\right|_{K}^{1 / \operatorname{deg}(L / K)}=\left(\prod_{\gamma \in \operatorname{Gal}(L / K)}|\gamma(x)|_{L}\right)^{1 /|\operatorname{Gal}(L / K)|} .
$$

The desired identity then follows from formula $|x|_{L}=|\gamma(x)|_{L}$ for $\gamma \in \operatorname{Gal}(L / K)$ (by virtue of the uniqueness asserted in Theorem 3).
Warning 5. In the situation of Theorem 3, one cannot drop the assumption that K is complete. If K is not complete, then the norm $|\bullet|_{K}$ can generally be extended in many different ways to extension fields L over K, and the formula $|x|_{L}=\left|N_{L / K}(x)\right|_{K}^{1 / \operatorname{deg}(L / K)}$ of Remark 4 need not define an absolute value on L.
Corollary 6. Let K be a field which is complete with respect to a non-archimedean absolute value $|\bullet|_{K}$, and let $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ be an irreducible polynomial with coefficients in K. If a_{n} belongs to \mathcal{O}_{K}, then each a_{i} belongs to \mathcal{O}_{K}.

Proof. Let L be a finite normal extension of K over which the polynomial $f(x)$ factors as a product $f(x)=$ $\left(x-r_{1}\right) \cdot\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)$. Equip L with the absolute value $|\bullet|_{L}$ of Theorem 3. Since the roots r_{i} are conjugate by the action of the Galois group $\operatorname{Gal}(L / K)$, they must all have the same absolute value; that is, there exists a real number λ satisfying $\left|r_{i}\right|_{L}=\lambda$ for all i. Then $a_{n}=(-1)^{n} \prod_{i=1}^{n} r_{i}$. Consequently, if a_{n} belongs to \mathcal{O}_{K}, then each r_{i} belongs to \mathcal{O}_{L}. It follows that the polynomial

$$
f(x)=\prod_{i=1}^{n}\left(x-r_{i}\right)
$$

has coefficients in \mathcal{O}_{L}, so that each a_{i} belongs to $\mathcal{O}_{L} \cap K=\mathcal{O}_{K}$ as desired.
Proof of Proposition 2. Let K be a perfectoid field such that the tilt K^{b} is algebraically closed, and let $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n} \in K[x]$ be a non-constant irreducible polynomial. We wish to show that, for each element $y \in K$, we can find another point $y^{\prime} \in K$ satisfying

$$
\left|y-y^{\prime}\right|_{K} \leq|f(y)|_{K}^{1 / n} \quad\left|f\left(y^{\prime}\right)\right|_{K} \leq|p f(y)|_{K}
$$

Replacing $f(x)$ by the polynomial $f(x+y)$, we can reduce to the case $y=0$; in this case, we wish to show that there exists $y^{\prime} \in K$ satisfying

$$
\left|y^{\prime}\right|_{K} \leq|f(0)|_{K}^{1 / n} \quad\left|f\left(y^{\prime}\right)\right|_{K} \leq|p f(0)|_{K}
$$

Let us assume that $f(0) \neq 0$ (otherwise, we can take $y^{\prime}=0$ and there is nothing to prove). Note that the value group of K is the same as the value group of K^{b}, and is therefore divisible (since K^{b} is algebraically closed). We can therefore choose an element $c \in K$ satisfying $|c|_{K}=|f(0)|_{K}^{1 / n}$. In this case, we can rewrite the inequalities above as

$$
\left|\frac{y^{\prime}}{c}\right|_{K} \leq 1 \quad\left|\frac{1}{c^{n}} f\left(c \cdot \frac{y^{\prime}}{c}\right)\right|_{K} \leq|p|_{K}
$$

Replacing $f(x)$ by the monic polynomial $\frac{1}{c^{n}} f(c x)$ (and y^{\prime} by $\frac{y^{\prime}}{c}$), we can reduce to the case where $|f(0)|_{K}=1$. In this case, we wish to show that there exists $y^{\prime} \in K$ satisfying

$$
\left|y^{\prime}\right|_{K} \leq 1 \quad\left|f\left(y^{\prime}\right)\right|_{K} \leq|p|_{K}
$$

Write $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$. Our assumption that $|f(0)|_{K}=1$ guarantees that a_{n} belongs to \mathcal{O}_{K}. Applying Corollary 6, we see that each of the coefficients a_{i} belongs to \mathcal{O}_{K}. We can therefore choose elements $b_{i} \in \mathcal{O}_{K}^{b}$ satisfying $b_{i}^{\sharp} \equiv a_{i}(\bmod p)$. Set

$$
g(x)=x^{n}+b_{1} x^{n-1}+b_{2} x^{n-2}+\cdots+b_{n} \in K^{b}[x] .
$$

Since K^{b} is algebraically closed, the polynomial $g(x)$ factors as a product

$$
g(x)=\left(x-r_{1}\right) \cdots\left(x-r_{n}\right)
$$

for some $r_{1}, r_{2}, \ldots, r_{n} \in K^{b}$. Note that we have

$$
\left|r_{1}\right|_{K^{b}} \cdots\left|r_{n}\right|_{K^{b}}=\left|(-1)^{n} b_{n}\right|_{K^{b}} \leq 1
$$

It follows that there must exist $r \in\left\{r_{1}, \ldots, r_{n}\right\}$ satisfying $|r|_{K^{b}} \leq 1$, so that r belongs to \mathcal{O}_{K}^{b}. Setting $y^{\prime}=r^{\sharp}$, we have $\left|y^{\prime}\right|_{K}=|r|_{K^{b}} \leq 1$, and

$$
\begin{aligned}
f\left(y^{\prime}\right) & =y^{\prime n}+a_{1} y^{\prime n-1}+\cdots+a_{n} \\
& \equiv y^{\prime n}+b_{1}^{\sharp} y^{\prime n-1}+\cdots+b_{n}^{\sharp} \quad(\bmod p) \\
& =\left(r^{\sharp}\right)^{n}+b_{1}^{\sharp}\left(r^{\sharp}\right)^{n-1}+\cdots+b_{n}^{\sharp} \\
& \equiv(g(r))^{\sharp} \quad(\bmod p) \\
& =0
\end{aligned}
$$

so that $\left|f\left(y^{\prime}\right)\right|_{K} \leq|p|_{K}$, as desired.

