Lecture 17: Algebraic Closure of Untilts

November 9, 2018

Our goal in this lecture is to prove the following result, which we have used several times without proof:

Theorem 1. Let K be a perfectoid field. If the tilt K^{\flat} is algebraically closed, then K is algebraically closed.

We will prove Theorem 1 using an approximation argument which is similar to (but much easier than) the strategy of the last two lectures. The key point is to prove the following:

Proposition 2. Let K be a perfectoid field such that the tilt K^{\flat} is algebraically closed, and let $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n \in K[x]$ be a non-constant irreducible polynomial. Let y be an element of K. Then there exists an element $y' \in K$ satisfying

$$|y - y'|_K \le |f(y)|_K^{1/n} \qquad |f(y')|_K \le |pf(y)|_K.$$

Proof of Theorem 1 from Proposition 2. Let K be a perfectoid field such that K^{\flat} is algebraically closed. We assume that K has characteristic zero (otherwise there is nothing to prove). We wish to show that K is algebraically closed: that is, that every non-constant polynomial $f(x) \in K[x]$ has a root in K. Without loss of generality, we may assume that f(x) is monic and irreducible of degree n > 0. Replacing f(x) by $p^{nd}f(\frac{x}{p^d})$ for $d \gg 0$, we may assume that the coefficients of f belong to \mathcal{O}_K . Setting $y_0 = 0$, it follows that $f(y_0) \in \mathcal{O}_K$, or equivalently that $|f(y_0)|_K \leq |p^0|_K$. Applying Proposition 2, we deduce that there exists $y_1 \in K$ satisfying $|y_0 - y_1|_K \leq |f(y_0)|_K^{1/n} \leq |p^0|_K^{1/n}$ and $|f(y_1)|_K \leq |pf(y_0)|_K \leq |p|_K$. Applying Proposition 2 to the element y_1 , we obtain an element $y_2 \in \mathcal{O}_K$ satisfying $|y_1 - y_2|_K \leq |f(y_1)|_K^{1/n} \leq |p|_K^{1/n}$ and $|f(y_2)|_K \leq |pf(y_1)|_K \leq |p^2|_K$. Proceeding in this way, we obtain a sequence of elements $y_0 = 0, y_1, y_2, \ldots \in K$ satisfying

$$|y_m - y_{m+1}|_K \le |p^m|_K^{1/n} \qquad |f(y_m)|_K \le |p^m|_K.$$

It follows from the first inequality (and the completeness of K) that the sequence $\{y_m\}$ converges to an element $y \in K$. Then

$$|f(y)|_K = \lim_{m \to \infty} |f(y_m)|_K = 0,$$

so that y is a root of f.

For the proof of Proposition 2, we will use the following result from the theory of valued fields:

Theorem 3. Let K be a field which is complete with respect to a non-archimedean absolute value $|\bullet|_K$, and let L be a finite extension field of K. Then $|\bullet|_K$ can be extended uniquely to an absolute value on the field $|\bullet|_L$.

Remark 4. In the situation of Theorem 3, the absolute value $|\bullet|_L$ is given concretely by the formula

$$|x|_{L} = |N_{L/K}(x)|_{K}^{1/\deg(L/K)},$$

where $N_{L/K} : L \to K$ denotes the norm map and $\deg(L/K)$ denotes the degree of the field extension $K \hookrightarrow L$. To prove this, we are free to enlarge L and may thereby assume that L is a normal extension of K. In this case, we can write

$$N_{L/K}(x) = (\prod_{\gamma \in \operatorname{Gal}(L/K)} \gamma(x))^{d_0},$$

where d_0 is the inseparable degree of L over K. We therefore have

$$|N_{L/K}(x)|_{K}^{1/\deg(L/K)} = (\prod_{\gamma \in \operatorname{Gal}(L/K)} |\gamma(x)|_{L})^{1/|\operatorname{Gal}(L/K)|}.$$

The desired identity then follows from formula $|x|_L = |\gamma(x)|_L$ for $\gamma \in \text{Gal}(L/K)$ (by virtue of the uniqueness asserted in Theorem 3).

Warning 5. In the situation of Theorem 3, one cannot drop the assumption that K is complete. If K is not complete, then the norm $|\bullet|_K$ can generally be extended in many different ways to extension fields L over K, and the formula $|x|_L = |N_{L/K}(x)|_K^{1/\deg(L/K)}$ of Remark 4 need not define an absolute value on L.

Corollary 6. Let K be a field which is complete with respect to a non-archimedean absolute value $|\bullet|_K$, and let $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ be an irreducible polynomial with coefficients in K. If a_n belongs to \mathcal{O}_K , then each a_i belongs to \mathcal{O}_K .

Proof. Let L be a finite normal extension of K over which the polynomial f(x) factors as a product $f(x) = (x - r_1) \cdot (x - r_2) \cdots (x - r_n)$. Equip L with the absolute value $|\bullet|_L$ of Theorem 3. Since the roots r_i are conjugate by the action of the Galois group $\operatorname{Gal}(L/K)$, they must all have the same absolute value; that is, there exists a real number λ satisfying $|r_i|_L = \lambda$ for all i. Then $a_n = (-1)^n \prod_{i=1}^n r_i$. Consequently, if a_n belongs to \mathcal{O}_K , then each r_i belongs to \mathcal{O}_L . It follows that the polynomial

$$f(x) = \prod_{i=1}^{n} (x - r_i)$$

has coefficients in \mathcal{O}_L , so that each a_i belongs to $\mathcal{O}_L \cap K = \mathcal{O}_K$ as desired.

Proof of Proposition 2. Let K be a perfected field such that the tilt K^{\flat} is algebraically closed, and let $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n \in K[x]$ be a non-constant irreducible polynomial. We wish to show that, for each element $y \in K$, we can find another point $y' \in K$ satisfying

$$|y - y'|_K \le |f(y)|_K^{1/n} \qquad |f(y')|_K \le |pf(y)|_K.$$

1 /

Replacing f(x) by the polynomial f(x+y), we can reduce to the case y = 0; in this case, we wish to show that there exists $y' \in K$ satisfying

$$|y'|_K \le |f(0)|_K^{1/n} \qquad |f(y')|_K \le |pf(0)|_K.$$

Let us assume that $f(0) \neq 0$ (otherwise, we can take y' = 0 and there is nothing to prove). Note that the value group of K is the same as the value group of K^{\flat} , and is therefore divisible (since K^{\flat} is algebraically closed). We can therefore choose an element $c \in K$ satisfying $|c|_K = |f(0)|_K^{1/n}$. In this case, we can rewrite the inequalities above as

$$|\frac{y'}{c}|_{K} \le 1$$
 $|\frac{1}{c^{n}}f(c \cdot \frac{y'}{c})|_{K} \le |p|_{K}.$

Replacing f(x) by the monic polynomial $\frac{1}{c^n} f(cx)$ (and y' by $\frac{y'}{c}$), we can reduce to the case where $|f(0)|_K = 1$. In this case, we wish to show that there exists $y' \in K$ satisfying

$$|y'|_K \le 1$$
 $|f(y')|_K \le |p|_K$

Write $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$. Our assumption that $|f(0)|_K = 1$ guarantees that a_n belongs to \mathcal{O}_K . Applying Corollary 6, we see that each of the coefficients a_i belongs to \mathcal{O}_K . We can therefore choose elements $b_i \in \mathcal{O}_K^{\flat}$ satisfying $b_i^{\sharp} \equiv a_i \pmod{p}$. Set

$$g(x) = x^{n} + b_{1}x^{n-1} + b_{2}x^{n-2} + \dots + b_{n} \in K^{\flat}[x].$$

Since K^{\flat} is algebraically closed, the polynomial g(x) factors as a product

$$g(x) = (x - r_1) \cdots (x - r_n)$$

for some $r_1, r_2, \ldots, r_n \in K^{\flat}$. Note that we have

$$|r_1|_{K^{\flat}} \cdots |r_n|_{K^{\flat}} = |(-1)^n b_n|_{K^{\flat}} \le 1$$

It follows that there must exist $r \in \{r_1, \ldots, r_n\}$ satisfying $|r|_{K^\flat} \leq 1$, so that r belongs to \mathcal{O}_K^\flat . Setting $y' = r^\sharp$, we have $|y'|_K = |r|_{K^\flat} \leq 1$, and

$$f(y') = y'^{n} + a_{1}y'^{n-1} + \dots + a_{n}$$

$$\equiv y'^{n} + b_{1}^{\sharp}y'^{n-1} + \dots + b_{n}^{\sharp} \pmod{p}$$

$$= (r^{\sharp})^{n} + b_{1}^{\sharp}(r^{\sharp})^{n-1} + \dots + b_{n}^{\sharp}$$

$$\equiv (g(r))^{\sharp} \pmod{p}$$

$$= 0$$

so that $|f(y')|_K \leq |p|_K$, as desired.