
Lecture 16: Converging to a Zero

November 8, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C[ of characteristic p. Let f be
an element of the ring Ainf which is primitive of degree d: that is, an element which admits a Teichmüller
expansion

∑
n≥0[cn]pn satisfying

c0 6= 0 |ci|C[ < 1 for i ¡ d |cd|C[ = 1.

Assume that d > 0, and let λ ∈ (0, 1) be the largest element for which the function s 7→ vs(f) fails to be
differentiable at − log(λ); that is, λ satisfies

|ci|λi ≤ λd for all i

|ci|λi = λd for some i < d

Our goal in this lecture is to complete the proof of the following result:

Proposition 1. Then there exists a point y ∈ Y satisfying d(0, y) = λ and f(y) = 0.

Note that we have |f |λ = λd. Consequently, for each point y ∈ Y satisfying d(0, y) = λ, we automatically
have

|f(y)| ≤ |f |λ = λd.

Moreover, we expect the inequality to be strict if and only if y is “close” to a root of f . More precisely,
if f factors as a product of distinguished elements of Ainf (which will follow once Proposition 1 has been
proved), then we expect

|f(y)| = λd ·
∏ d(y′, y)

λ
,

where the product is taken over the collection of all y′ satisfying d(0, y′) = λ and f(y′) = 0 (counted with
multiplicity!); here at most d factors appear. In particular, we should be able to choose at least one such
point y′ satisfying

d(y′, y)

λ
≤ (
|f(y)|
λd

)1/d.

We now show that this is the case.

Lemma 2. Let y be a point of Y satisfying d(0, y) = λ, and suppose that |f(y)| = λd · α for some α < 1.
Then there exists a point y′ ∈ Y satisfying d(y, y′) ≤ λ · α1/d and f(y′) ≤ λd+1 · α.

Proof of Proposition 1 from Lemma 2. We proved in Lecture 15 that there exists a point y1 ∈ Y satisfying
d(0, y1) = λ and |f(y1)| ≤ λd+1. Applying Lemma 2, we can choose a point y2 ∈ Y satisfying d(y1, y2) ≤ λ1+ 1

d

and |f(y2)| ≤ λd+2. Note that we then also have d(0, y2) = λ, so we can apply Lemma 2 again to choose a

point y3 ∈ Y satisfying d(y2, y3) ≤ λ1+
2
d and |f(y3)| ≤ λd+3. Continuing in this way, we obtain a sequence

of points {yn} on the circle Y[λ,λ] satisfying

d(yn, yn+1) ≤ λ1+n
d |f(yn)| ≤ λd+n.
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The first inequality implies that the sequence {yn} is Cauchy, and therefore converges to a point y ∈ Y[λ,λ].
The second inequality implies that |f(y)| = limn→∞ |f(yn)| = 0, so that f(y) = 0.

Proof of Lemma 2. Fix a point y = (K, ι) ∈ Y satisfying d(0, y) = λ and |f(y)|K ≤ λd · α. Let ξ be a
distinguished element of Ainf satisfying ξ(y) = 0. Since Ainf is ξ-adically complete and every element of

Ainf/ξ belongs to the image of ] : O[C → OK , we can write f as a sum∑
n≥0

[cn]ξn

(beware that this representation is not unique, because the map ] : O[C → OK is not bijective). Note that
under the reduction map

Ainf = W (O[C)→W (O[C /m
[
C) = W (k),

the image of ξ is a unit multiple of p (since ξ is distinguished) and the image of f is a unit multiple of pd

(since f is primitive of degree d). It follows that |ci|C[ < 1 for i < d and that |cd|C[ = 1. Replacing f by
f/[cd], we may assume without loss of generality that cd = 1. Note that we have

|c0|C[ = |[c0](y)|K = |f(y)|K = λd · α.

We will assume that c0 6= 0 (otherwise, we can take y′ = y).

Consider the polynomial

F (x) = c0 + c1x+ · · ·+ cd−1x
d−1 + xd ∈ C[[x].

Since C[ is algebraically closed, we can factor F (x) as a product of linear factors

F (x) = (x− r1)(x− r2) · · · (x− rd)

for some elements r1, r2, . . . , rd ∈ C[. Choose r ∈ {r1, . . . , rd} so that the absolute value of r is as small as
possible. Note that, for 0 ≤ m ≤ d, we have cm = ±ed−m(r1, . . . , rd), where ed−m denotes the (d −m)th
elementary symmetric polynomial. We therefore have

|r|mC[ |cm|C[ ≤ |r|mC[ sup
J⊆{1,...,d},|J|=d−m

∏
j∈J
|rj |C[

≤
∏d
j=1 |rj |C[

|r|m
= |c0|C[

= λd · α.

In the special case m = d, we have |r|d
C[ ≤ λd · α, or |r|C[ ≤ λ · α1/d. Set ξ′ = ξ − [r]. Then ξ′ is also a

distinguished element, vanishing at a point y′ ∈ Y . We have

d(y, y′) = |ξ′(y)|K = | − [r](y)|K = |r|C[ ≤ λ · α1/d.

It follows that d(y, y′) < λ = d(0, y), so that we have d(0, y′) = λ. Let K ′ be the untilt of C[ corresponding
to the point y′ and let ] : C[ → K ′ be the usual map (given by x] = [x](y′)). Then ξ(y′) = (ξ′+[r])(y′) = r].
We therefore have

f(y′)

[c0]
=

∑
n≥0

c]n

c]0
ξ(y′)n

=
∑
n≥0

(
cnr

n

c0
)].
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Note that the ration cnr
n

c0
belongs to OC[ for n ≤ d (by virtue of the inequality |cnrn|C[ ≤ |c0| established

above). For n > d, we have

|cnr
n

c0
|C[ ≤ |

rn

c0
|C[ ≤

|r|n
C[

λd · α
≤ λn · αn/d

λd · α
≤ λ = |p|K′ .

It follows that each ( cnr
n

c0
)] belongs to the valuation ring O[K , and is divisible by p (in O[K) when n > d. We

therefore compute

f(y′)

[c0]
=

∑
n≥0

(
cnr

n

c0
)]

≡
d∑

n=0

(
cnr

n

c0
)] (mod p)

≡ (

d∑
n=0

cnr
n

c0
)] (mod p)

=
F (r)]

c]0
= 0.

We therefore have
|f(y′)|K′ ≤ |[c0]|K′ · |p|K′ = λd · α · λ = λd+1 · α.
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