Lecture 16: Converging to a Zero

November 8, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C^{b} of characteristic p. Let f be an element of the ring $\mathbf{A}_{\text {inf }}$ which is primitive of degree d : that is, an element which admits a Teichmüller expansion $\sum_{n \geq 0}\left[c_{n}\right] p^{n}$ satisfying

$$
c_{0} \neq 0 \quad\left|c_{i}\right|_{C^{b}}<1 \text { for i i d } \quad\left|c_{d}\right|_{C^{b}}=1
$$

Assume that $d>0$, and let $\lambda \in(0,1)$ be the largest element for which the function $s \mapsto v_{s}(f)$ fails to be differentiable at $-\log (\lambda)$; that is, λ satisfies

$$
\begin{gathered}
\left|c_{i}\right| \lambda^{i} \leq \lambda^{d} \text { for all } i \\
\left|c_{i}\right| \lambda^{i}=\lambda^{d} \text { for some } i<d
\end{gathered}
$$

Our goal in this lecture is to complete the proof of the following result:
Proposition 1. Then there exists a point $y \in Y$ satisfying $d(0, y)=\lambda$ and $f(y)=0$.
Note that we have $|f|_{\lambda}=\lambda^{d}$. Consequently, for each point $y \in Y$ satisfying $d(0, y)=\lambda$, we automatically have

$$
|f(y)| \leq|f|_{\lambda}=\lambda^{d}
$$

Moreover, we expect the inequality to be strict if and only if y is "close" to a root of f. More precisely, if f factors as a product of distinguished elements of $\mathbf{A}_{\text {inf }}$ (which will follow once Proposition 1 has been proved), then we expect

$$
|f(y)|=\lambda^{d} \cdot \prod \frac{d\left(y^{\prime}, y\right)}{\lambda}
$$

where the product is taken over the collection of all y^{\prime} satisfying $d\left(0, y^{\prime}\right)=\lambda$ and $f\left(y^{\prime}\right)=0$ (counted with multiplicity!); here at most d factors appear. In particular, we should be able to choose at least one such point y^{\prime} satisfying

$$
\frac{d\left(y^{\prime}, y\right)}{\lambda} \leq\left(\frac{|f(y)|}{\lambda^{d}}\right)^{1 / d}
$$

We now show that this is the case.
Lemma 2. Let y be a point of Y satisfying $d(0, y)=\lambda$, and suppose that $|f(y)|=\lambda^{d} \cdot \alpha$ for some $\alpha<1$. Then there exists a point $y^{\prime} \in Y$ satisfying $d\left(y, y^{\prime}\right) \leq \lambda \cdot \alpha^{1 / d}$ and $f\left(y^{\prime}\right) \leq \lambda^{d+1} \cdot \alpha$.

Proof of Proposition 1 from Lemma 2. We proved in Lecture 15 that there exists a point $y_{1} \in Y$ satisfying $d\left(0, y_{1}\right)=\lambda$ and $\left|f\left(y_{1}\right)\right| \leq \lambda^{d+1}$. Applying Lemma 2 , we can choose a point $y_{2} \in Y$ satisfying $d\left(y_{1}, y_{2}\right) \leq \lambda^{1+\frac{1}{d}}$ and $\left|f\left(y_{2}\right)\right| \leq \lambda^{d+2}$. Note that we then also have $d\left(0, y_{2}\right)=\lambda$, so we can apply Lemma 2 again to choose a point $y_{3} \in Y$ satisfying $d\left(y_{2}, y_{3}\right) \leq \lambda^{1+\frac{2}{d}}$ and $\left|f\left(y_{3}\right)\right| \leq \lambda^{d+3}$. Continuing in this way, we obtain a sequence of points $\left\{y_{n}\right\}$ on the circle $Y_{[\lambda, \lambda]}$ satisfying

$$
d\left(y_{n}, y_{n+1}\right) \leq \lambda^{1+\frac{n}{d}} \quad\left|f\left(y_{n}\right)\right| \leq \lambda^{d+n} .
$$

The first inequality implies that the sequence $\left\{y_{n}\right\}$ is Cauchy, and therefore converges to a point $y \in Y_{[\lambda, \lambda]}$. The second inequality implies that $|f(y)|=\lim _{n \rightarrow \infty}\left|f\left(y_{n}\right)\right|=0$, so that $f(y)=0$.

Proof of Lemma 2. Fix a point $y=(K, \iota) \in Y$ satisfying $d(0, y)=\lambda$ and $|f(y)|_{K} \leq \lambda^{d} \cdot \alpha$. Let ξ be a distinguished element of $\mathbf{A}_{\text {inf }}$ satisfying $\xi(y)=0$. Since $\mathbf{A}_{\text {inf }}$ is ξ-adically complete and every element of $\mathbf{A}_{\text {inf }} / \xi$ belongs to the image of $\sharp: \mathcal{O}_{C}^{b} \rightarrow \mathcal{O}_{K}$, we can write f as a sum

$$
\sum_{n \geq 0}\left[c_{n}\right] \xi^{n}
$$

(beware that this representation is not unique, because the map $\sharp: \mathcal{O}_{C}^{b} \rightarrow \mathcal{O}_{K}$ is not bijective). Note that under the reduction map

$$
\mathbf{A}_{\mathrm{inf}}=W\left(\mathcal{O}_{C}^{b}\right) \rightarrow W\left(\mathcal{O}_{C}^{b} / \mathfrak{m}_{C}^{b}\right)=W(k)
$$

the image of ξ is a unit multiple of p (since ξ is distinguished) and the image of f is a unit multiple of p^{d} (since f is primitive of degree d). It follows that $\left|c_{i}\right|_{C^{b}}<1$ for $i<d$ and that $\left|c_{d}\right|_{C^{b}}=1$. Replacing f by $f /\left[c_{d}\right]$, we may assume without loss of generality that $c_{d}=1$. Note that we have

$$
\left|c_{0}\right|_{C^{b}}=\left|\left[c_{0}\right](y)\right|_{K}=|f(y)|_{K}=\lambda^{d} \cdot \alpha
$$

We will assume that $c_{0} \neq 0$ (otherwise, we can take $y^{\prime}=y$).
Consider the polynomial

$$
F(x)=c_{0}+c_{1} x+\cdots+c_{d-1} x^{d-1}+x^{d} \in C_{b}[x]
$$

Since C^{b} is algebraically closed, we can factor $F(x)$ as a product of linear factors

$$
F(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right)
$$

for some elements $r_{1}, r_{2}, \ldots, r_{d} \in C^{b}$. Choose $r \in\left\{r_{1}, \ldots, r_{d}\right\}$ so that the absolute value of r is as small as possible. Note that, for $0 \leq m \leq d$, we have $c_{m}= \pm e_{d-m}\left(r_{1}, \ldots, r_{d}\right)$, where e_{d-m} denotes the $(d-m)$ th elementary symmetric polynomial. We therefore have

$$
\begin{aligned}
|r|_{C^{b}}^{m}\left|c_{m}\right|_{C^{b}} & \leq|r|_{C^{b}}^{m} \sup _{J \subseteq\{1, \ldots, d\},|J|=d-m} \prod_{j \in J}\left|r_{j}\right|_{C^{b}} \\
& \leq \frac{\prod_{j=1}^{d}\left|r_{j}\right|_{C^{b}}}{|r|^{m}} \\
& =\left|c_{0}\right|_{C^{b}} \\
& =\lambda^{d} \cdot \alpha .
\end{aligned}
$$

In the special case $m=d$, we have $|r|_{C^{b}}^{d} \leq \lambda^{d} \cdot \alpha$, or $|r|_{C^{b}} \leq \lambda \cdot \alpha^{1 / d}$. Set $\xi^{\prime}=\xi-[r]$. Then ξ^{\prime} is also a distinguished element, vanishing at a point $y^{\prime} \in Y$. We have

$$
d\left(y, y^{\prime}\right)=\left|\xi^{\prime}(y)\right|_{K}=|-[r](y)|_{K}=|r|_{C^{b}} \leq \lambda \cdot \alpha^{1 / d}
$$

It follows that $d\left(y, y^{\prime}\right)<\lambda=d(0, y)$, so that we have $d\left(0, y^{\prime}\right)=\lambda$. Let K^{\prime} be the untilt of C^{b} corresponding to the point y^{\prime} and let $\sharp: C^{b} \rightarrow K^{\prime}$ be the usual map (given by $\left.x^{\sharp}=[x]\left(y^{\prime}\right)\right)$. Then $\xi\left(y^{\prime}\right)=\left(\xi^{\prime}+[r]\right)\left(y^{\prime}\right)=r^{\sharp}$. We therefore have

$$
\begin{aligned}
\frac{f\left(y^{\prime}\right)}{\left[c_{0}\right]} & =\sum_{n \geq 0} \frac{c_{n}^{\sharp}}{c_{0}^{\sharp}} \xi\left(y^{\prime}\right)^{n} \\
& =\sum_{n \geq 0}\left(\frac{c_{n} r^{n}}{c_{0}}\right)^{\sharp} .
\end{aligned}
$$

Note that the ration $\frac{c_{n} r^{n}}{c_{0}}$ belongs to $\mathcal{O}_{C^{b}}$ for $n \leq d$ (by virtue of the inequality $\left|c_{n} r^{n}\right|_{C^{b}} \leq\left|c_{0}\right|$ established above). For $n>d$, we have

$$
\left|\frac{c_{n} r^{n}}{c_{0}}\right|_{C^{b}} \leq\left|\frac{r^{n}}{c_{0}}\right|_{C^{b}} \leq \frac{|r|_{C^{b}}^{n}}{\lambda^{d} \cdot \alpha} \leq \frac{\lambda^{n} \cdot \alpha^{n / d}}{\lambda^{d} \cdot \alpha} \leq \lambda=|p|_{K^{\prime}}
$$

It follows that each $\left(\frac{c_{n} r^{n}}{c_{0}}\right)^{\sharp}$ belongs to the valuation ring \mathcal{O}_{K}^{b}, and is divisible by p (in \mathcal{O}_{K}^{b}) when $n>d$. We therefore compute

$$
\begin{aligned}
\frac{f\left(y^{\prime}\right)}{\left[c_{0}\right]} & =\sum_{n \geq 0}\left(\frac{c_{n} r^{n}}{c_{0}}\right)^{\sharp} \\
& \equiv \sum_{n=0}^{d}\left(\frac{c_{n} r^{n}}{c_{0}}\right)^{\sharp}(\bmod p) \\
& \equiv\left(\sum_{n=0}^{d} \frac{c_{n} r^{n}}{c_{0}}\right)^{\sharp} \quad(\bmod p) \\
& =\frac{F(r)^{\sharp}}{c_{0}^{\sharp}} \\
& =0 .
\end{aligned}
$$

We therefore have

$$
\left|f\left(y^{\prime}\right)\right|_{K^{\prime}} \leq\left|\left[c_{0}\right]\right|_{K^{\prime}} \cdot|p|_{K^{\prime}}=\lambda^{d} \cdot \alpha \cdot \lambda=\lambda^{d+1} \cdot \alpha
$$

