Lecture 16: Converging to a Zero

November 8, 2018

Throughout this lecture, we fix an algebraically closed perfected field C^{\flat} of characteristic p. Let f be an element of the ring \mathbf{A}_{inf} which is primitive of degree d: that is, an element which admits a Teichmüller expansion $\sum_{n>0} [c_n] p^n$ satisfying

$$c_0 \neq 0$$
 $|c_i|_{C^\flat} < 1$ for i j d $|c_d|_{C^\flat} = 1$.

Assume that d > 0, and let $\lambda \in (0, 1)$ be the largest element for which the function $s \mapsto v_s(f)$ fails to be differentiable at $-\log(\lambda)$; that is, λ satisfies

$$|c_i|\lambda^i \le \lambda^d$$
 for all i
 $|c_i|\lambda^i = \lambda^d$ for some $i < a$

Our goal in this lecture is to complete the proof of the following result:

Proposition 1. Then there exists a point $y \in Y$ satisfying $d(0, y) = \lambda$ and f(y) = 0.

Note that we have $|f|_{\lambda} = \lambda^d$. Consequently, for each point $y \in Y$ satisfying $d(0, y) = \lambda$, we automatically have

$$|f(y)| \le |f|_{\lambda} = \lambda^d.$$

Moreover, we expect the inequality to be strict if and only if y is "close" to a root of f. More precisely, if f factors as a product of distinguished elements of \mathbf{A}_{inf} (which will follow once Proposition 1 has been proved), then we expect

$$|f(y)| = \lambda^d \cdot \prod \frac{d(y', y)}{\lambda}$$

where the product is taken over the collection of all y' satisfying $d(0, y') = \lambda$ and f(y') = 0 (counted with multiplicity!); here at most d factors appear. In particular, we should be able to choose at least one such point y' satisfying

$$\frac{d(y',y)}{\lambda} \le (\frac{|f(y)|}{\lambda^d})^{1/d}.$$

We now show that this is the case.

Lemma 2. Let y be a point of Y satisfying $d(0, y) = \lambda$, and suppose that $|f(y)| = \lambda^d \cdot \alpha$ for some $\alpha < 1$. Then there exists a point $y' \in Y$ satisfying $d(y, y') \leq \lambda \cdot \alpha^{1/d}$ and $f(y') \leq \lambda^{d+1} \cdot \alpha$.

Proof of Proposition 1 from Lemma 2. We proved in Lecture 15 that there exists a point $y_1 \in Y$ satisfying $d(0, y_1) = \lambda$ and $|f(y_1)| \leq \lambda^{d+1}$. Applying Lemma 2, we can choose a point $y_2 \in Y$ satisfying $d(y_1, y_2) \leq \lambda^{1+\frac{1}{d}}$ and $|f(y_2)| \leq \lambda^{d+2}$. Note that we then also have $d(0, y_2) = \lambda$, so we can apply Lemma 2 again to choose a point $y_3 \in Y$ satisfying $d(y_2, y_3) \leq \lambda^{1+\frac{2}{d}}$ and $|f(y_3)| \leq \lambda^{d+3}$. Continuing in this way, we obtain a sequence of points $\{y_n\}$ on the circle $Y_{[\lambda,\lambda]}$ satisfying

$$d(y_n, y_{n+1}) \le \lambda^{1+\frac{n}{d}} \qquad |f(y_n)| \le \lambda^{d+n}.$$

The first inequality implies that the sequence $\{y_n\}$ is Cauchy, and therefore converges to a point $y \in Y_{[\lambda,\lambda]}$. The second inequality implies that $|f(y)| = \lim_{n \to \infty} |f(y_n)| = 0$, so that f(y) = 0.

Proof of Lemma 2. Fix a point $y = (K, \iota) \in Y$ satisfying $d(0, y) = \lambda$ and $|f(y)|_K \leq \lambda^d \cdot \alpha$. Let ξ be a distinguished element of \mathbf{A}_{inf} satisfying $\xi(y) = 0$. Since \mathbf{A}_{inf} is ξ -adically complete and every element of \mathbf{A}_{inf}/ξ belongs to the image of $\sharp : \mathcal{O}_C^{\flat} \to \mathcal{O}_K$, we can write f as a sum

$$\sum_{n\geq 0} [c_n]\xi^n$$

(beware that this representation is *not* unique, because the map $\sharp : \mathcal{O}_C^{\flat} \to \mathcal{O}_K$ is not bijective). Note that under the reduction map

$$\mathbf{A}_{\inf} = W(\mathbb{O}_C^{\flat}) \to W(\mathbb{O}_C^{\flat} / \mathfrak{m}_C^{\flat}) = W(k),$$

the image of ξ is a unit multiple of p (since ξ is distinguished) and the image of f is a unit multiple of p^d (since f is primitive of degree d). It follows that $|c_i|_{C^b} < 1$ for i < d and that $|c_d|_{C^b} = 1$. Replacing f by $f/[c_d]$, we may assume without loss of generality that $c_d = 1$. Note that we have

$$|c_0|_{C^\flat} = |[c_0](y)|_K = |f(y)|_K = \lambda^d \cdot \alpha.$$

We will assume that $c_0 \neq 0$ (otherwise, we can take y' = y).

Consider the polynomial

$$F(x) = c_0 + c_1 x + \dots + c_{d-1} x^{d-1} + x^d \in C_{\flat}[x].$$

Since C^{\flat} is algebraically closed, we can factor F(x) as a product of linear factors

$$F(x) = (x - r_1)(x - r_2) \cdots (x - r_d)$$

for some elements $r_1, r_2, \ldots, r_d \in C^{\flat}$. Choose $r \in \{r_1, \ldots, r_d\}$ so that the absolute value of r is as small as possible. Note that, for $0 \leq m \leq d$, we have $c_m = \pm e_{d-m}(r_1, \ldots, r_d)$, where e_{d-m} denotes the (d-m)th elementary symmetric polynomial. We therefore have

$$\begin{aligned} |r|_{C^{\flat}}^{m}|c_{m}|_{C^{\flat}} &\leq |r|_{C^{\flat}}^{m} \sup_{J \subseteq \{1,...,d\}, |J| = d - m} \prod_{j \in J} |r_{j}|_{C^{\flat}} \\ &\leq \frac{\prod_{j=1}^{d} |r_{j}|_{C^{\flat}}}{|r|^{m}} \\ &= |c_{0}|_{C^{\flat}} \\ &= \lambda^{d} \cdot \alpha. \end{aligned}$$

In the special case m = d, we have $|r|_{C^{\flat}}^{d} \leq \lambda^{d} \cdot \alpha$, or $|r|_{C^{\flat}} \leq \lambda \cdot \alpha^{1/d}$. Set $\xi' = \xi - [r]$. Then ξ' is also a distinguished element, vanishing at a point $y' \in Y$. We have

$$d(y, y') = |\xi'(y)|_K = |-[r](y)|_K = |r|_{C^{\flat}} \le \lambda \cdot \alpha^{1/d}.$$

It follows that $d(y, y') < \lambda = d(0, y)$, so that we have $d(0, y') = \lambda$. Let K' be the until of C^{\flat} corresponding to the point y' and let $\sharp : C^{\flat} \to K'$ be the usual map (given by $x^{\sharp} = [x](y')$). Then $\xi(y') = (\xi' + [r])(y') = r^{\sharp}$. We therefore have

$$\frac{f(y')}{[c_0]} = \sum_{n \ge 0} \frac{c_n^{\sharp}}{c_0^{\sharp}} \xi(y')^n$$
$$= \sum_{n \ge 0} (\frac{c_n r^n}{c_0})^{\sharp}.$$

Note that the ration $\frac{c_n r^n}{c_0}$ belongs to \mathcal{O}_{C^\flat} for $n \leq d$ (by virtue of the inequality $|c_n r^n|_{C^\flat} \leq |c_0|$ established above). For n > d, we have

$$|\frac{c_n r^n}{c_0}|_{C^\flat} \leq |\frac{r^n}{c_0}|_{C^\flat} \leq \frac{|r|_{C^\flat}^n}{\lambda^d \cdot \alpha} \leq \frac{\lambda^n \cdot \alpha^{n/d}}{\lambda^d \cdot \alpha} \leq \lambda = |p|_{K'}.$$

It follows that each $(\frac{c_n r^n}{c_0})^{\sharp}$ belongs to the valuation ring \mathcal{O}_K^{\flat} , and is divisible by p (in \mathcal{O}_K^{\flat}) when n > d. We therefore compute

$$\frac{f(y')}{[c_0]} = \sum_{n \ge 0} \left(\frac{c_n r^n}{c_0}\right)^{\sharp}$$
$$\equiv \sum_{n=0}^d \left(\frac{c_n r^n}{c_0}\right)^{\sharp} \pmod{p}$$
$$\equiv \left(\sum_{n=0}^d \frac{c_n r^n}{c_0}\right)^{\sharp} \pmod{p}$$
$$= \frac{F(r)^{\sharp}}{c_0^{\sharp}}$$
$$= 0.$$

We therefore have

$$|f(y')|_{K'} \le |[c_0]|_{K'} \cdot |p|_{K'} = \lambda^d \cdot \alpha \cdot \lambda = \lambda^{d+1} \cdot \alpha.$$