
Lecture 15: Zeroes of Primitive Elements

November 6, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C[ of characteristic p. Our goal is
to show if f is a nonzero element of the ring B[ρ,ρ] which is not invertible, then f vanishes at some point y
lying on the “circle”

Y[ρ,ρ] = {y = (K, ι) ∈ Y : |p|K = ρ}.
In the last lecture, we said that an element f of B[ρ,ρ] is good if we can write

f = g · ξ1 · ξ2 · · · · ξn,

where g is invertible and each ξi is a distinguished element of Ainf vanishing at some point yi ∈ Y[ρ,ρ].
Moreover, we proved that if f is a nonzero, noninvertible element of B[ρ,ρ] which can be realized as the
limit lim−→i→∞ fi (with respect to the Gauss norm | • |ρ where each fi is good, then f has a zero. Note that

any element of B[ρ,ρ] can be approximated arbitrarily well by elements of the ring Ainf [
1
p ,

1
[π] ], which admit

Teichmüller expansions ∑
n�−∞

[cn]pn.

Moreover, every such sum can be approximated arbitrarily well by elements with finite Teichmüller expan-
sions. It will therefore suffice to prove the following:

Proposition 1. Let f be an element of B[ρ,ρ] which admits a finite Teichmüller expansion
∑N
n=−N [cn]pn.

Then f is good.

It will be convenient to introduce a bit of terminology.

Definition 2. Let f be an element of Ainf , given by a Teichmüller expansion
∑
n≥0[cn]pn. We say that f

is primitive if c0 6= 0 and |cd|C[ = 1 for some integer d. If d is the smallest such integer, then we say that f
is primitive of degree d.

Remark 3. Let f be an element of Ainf . Then f is primitive if and only if it satisfies the following conditions:

• The element f is not divisible by p.

• The element f has nonzero image f under the map

Ainf = W (O[C)→W (O[C /m
[
C) = W (k),

where k denotes the residue field of C. In this case, the degree d of f is characterized by the equality
of ideals (pd) = (f) in W (k).

It follows that if f = gh is primitive, then g and h are also primitive, with deg(f) = deg(g) + deg(h).

Remark 4. An element f ∈ Ainf is primitive of degree 1 if and only if it is distinguished and corresponds
to a characteristic zero untilt of C[.
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Remark 5. Let f be an element of B[ρ,ρ] which admits a finite Teichmüller expansion
∑N
n=−N [cn]pn. Then

we can write f = pm · [c] · g, where m is an integer, c is a nonzero element of C[, and g ∈ Ainf is primitive.
Moreover, the integer m and the absolute value |c|C[ are uniquely determined.

Exercise 6. Let f =
∑
n�−∞[cn]pn be an element of Ainf [

1
p ,

1
[π] ]. Show that the following conditions are

equivalent:

• The element f is nonzero and the supremum supn{|cn|C[} is actually achieved for some integer n.

• The function s 7→ vs(f) fails to be differentiable at only finitely many points.

• The element f factors as a product pm · [c] · g, where g ∈ Ainf is primitive.

Example 7. Let ε be an element of 1 + m[C . Then the element [ε] − 1 ∈ Ainf is not primitive, since it has
vanishing image in W (k). More explicitly, the problem is that [ε] − 1 has infinitely many zeroes in Y : we
have

[ε]− 1 =
[ε]− 1

[ε1/p]− 1
· ([ε1/p]− 1)

=
[ε]− 1

[ε1/p]− 1
· [ε1/p]− 1

[ε1/p2 ]− 1
· ([ε1/p

2

]− 1)

= · · ·

We will deduce Proposition 1 from the following:

Proposition 8. Let f be an element of Ainf which is primitive of degree d > 0. Then f admits a factorization

f = ξ1 · ξ2 · . . . · ξd,

where each ξi is a distinguished element vanishing at some point yi ∈ Y .

Proof of Proposition 1 from Proposition 8. Let f be an element of B[ρ,ρ] which admits a finite Teichmüller
expansion. By Remark 5, we can write f = pm · [c] · g, where g is a primitive element of Ainf . Let d be the
degree of g. If d = 0, then g is invertible in Ainf and therefore f is invertible in B[ρ,ρ]. Otherwise, we can
use Proposition 8 to write g = ξ1 · . . . · ξd, where each ξi is a distinguished element of Ainf vanishing at some
point yi ∈ Y . Rearranging the product if necessary, we may assume that y1, y2, · · · , ym belong to the circle
Y[ρ,ρ], and that yi /∈ Y[ρ,ρ] for m < i ≤ d. Then ξi is invertible in B[ρ,ρ] for m < i ≤ d (this follows from
Lecture 13, but is also easy to see directly). The factorization

f = (pm · [c] ·
d∏

i=m+1

ξi) · ξ1 · · · · · ξm

now shows that f is good.

Let f =
∑
n≥0[cn]pn be an element of Ainf which is primitive of degree d, and consider the function

v•(f) : R>0 → R s 7→ vs(f) = inf
n

(v(cn) + ns).

Note that for n ≥ d, we have v(cn) + ns > v(cd) + ds = ds, so we might as well only take the infimum
only over the set {0, 1, . . . , d}. For s sufficiently small, this infimum is realized when n = d and we have
vs(f) = ds. When s is sufficiently large, the infimum is realized when n = 0 and we have vs(f) = v(c0). It
follows that, if d 6= 0, then there is some smallest positive real number s such that the function v•(f) is not
differentiable at s: that is, for which ∂−vs(f) > ∂+vs(f). Write s = − log(λ) for λ ∈ (0, 1). We will prove
the following:
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Proposition 9. Let f be an element of Ainf which is primitive of degree d > 0, and let λ ∈ (0, 1) be defined
as above. Then there exists a point y ∈ Y[λ,λ] satisfying f(y) = 0.

Proof of Proposition 8 from Proposition 9. Let f be an element of Ainf which is primitive of degree d; we
wish to show that f can be written as a product of d distinguished elements (corresponding to characteristic
zero untilts of C[). We proceed by induction on d; the case d = 1 is immediate from Remark 4. To carry
out the inductive hypothesis, we observe that Propositino 9 guarantees that there is a point y ∈ Y satisfying
f(y) = 0, so that f factors as a product f = g ·ξ, where ξ is a distinguished element vanishing at y. Remark 3
then shows that g is primitive of degree d−1 and can therefore be factored as a product of d−1 distinguished
elements by our inductive hypothesis.

Remark 10. To prove Proposition 8 from Proposition 9, the equality d(y, 0) = λ is irrelevant. We include
it in the statement of Proposition 9 to highlight that the overall strategy is a bit subtle. Let f be a nonzero
element of B[ρ,ρ] which is not invertible. Then f is a priori defined only at points belonging to the circle
Y[ρ,ρ], and we wish to show that there is a point y ∈ Y[ρ,ρ] satisfying f(y) = 0. To find this point, we are
writing f as the limit lim−→ fn of elements which admit finite Teichmüller expansions, and can therefore be
evaluated at any point of Y . For n � 0, we expect that the functions fn must also vanish at some point
yn ∈ Y[ρ,ρ], and the argument of Lecture 14 shows that we can choose these points so that the sequence {yn}
converges to a point y ∈ Y[ρ,ρ] where f vanishes. However, Proposition 9 does not produce the points yn
directly. Each fn vanishes at finitely many points of Y , some of which lie on the circle Y[ρ,ρ] and some of
which do not. The proof of Proposition 9 will actually select a zero of fn that is furthest from the origin. In
order to find the desired zero lying on the circle Y[ρ,ρ], we actually need to apply Proposition 9 repeatedly
(to primitive elements of Ainf which are factors of pm · [c] · fn)

Let us now begin the proof of Proposition 9. Note that we have vs(f) = ds for s ∈ (0,− log(λ)],
In particular, we have v− log(λ)(f) = −d log(λ), or equivalently |f |λ = λd. It follows that for any point

y = (Ky, ι) lying on the circle Y[λ,λ], we have |f(y)|Ky
≤ |f |λ = λd. We saw in the previous lecture that if

f is good (when regarded as an element of B[λ,λ]), then the equality is strict if and only if y is “close” to a
point where f vanishes: that is, if and only if there is a point y′ ∈ Y[λ,λ] satisfying d(y, y′) < λ and f(y′) = 0.
Of course, we do not yet know that f is good (that’s a special case of what we are trying to prove). But it
suggests that if we can find a point y ∈ Y[λ,λ] with |f(y)|Ky < λd, then we will be on the right track. We
therefore begin by proving the following weaker version of Proposition 9 (we will complete the proof in the
next lecture).

Lemma 11. Let f be an element of Ainf which is primitive of degree d > 0, and let λ ∈ (0, 1) be defined as
above. Then there exists a point y ∈ Y[λ,λ] satisfying |f(y)|Ky ≤ λd+1.

Proof. Write f =
∑
n≥0[cn]pn. Multiplying f by [c−1d ] if necessary, we may assume without loss of generality

that cd = 1. By our choice of λ, we have
|ci|C[λi ≤ λd

|ci|C[ ≤ λd−i

and that equality holds for at least one value of i.

Consider the polynomial

F (x) = xd + cd−1x
d−1 + · · ·+ c1x+ c0 ∈ C[[x].

Since C[ is algebraically closed, this polynomial factors as a product of linear factors: that is, we can find
elements r1, . . . , rd ∈ C[ satisfying F (x) = (x − r1)(x − r2) · · · (x − rd). Let λ′ denote the largest of the
absolute values of these roots (we will see in a moment that λ′ = λ). Without loss of generality, we may
assume that

|ri|C[ = λ for i = 1, . . . ,m |ri|C[ < λ for i = m+ 1,m+ 2, . . . , d.
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Let em(r1, . . . , rd) denote the mth symmetric function of r1 through rd. Then

em(r1, . . . , rd) = r1 · · · rm + terms of absolute value < λ′m .

We therefore have
λ′m = |em(r1, . . . , rd)|C[ = |cn−m|C[ ≤ λm.

On the other hand, there is some integer 0 ≤ i < d satisfying

λd−i = |ci|C[ = |ed−i(r1, . . . , rd)|C[ ≤ λ′d−i.

Combining these, we obtain λ = λ′.

Set r = r1, and note that ci = ±ed−i(r1, . . . , rn) is divisible by rd−i for 0 ≤ i ≤ d. Set ξ = p− [r]. Then
ξ is a distinguished element of Ainf vanishing at a point y ∈ Y satisfying d(0, y) = |r|C[ = λ′ = λ. Let K
denote the corresponding untilt of C[ and θ : Ainf � OK associated quotient map. Then

p−df(y) = p−dθ(f)

=
∑
n≥0

c]np
n−d

≡
d∑
i=0

(
ci
rd−i

)] (mod p)

≡ (

d∑
i=0

ci
rd−i

)] (mod p)

= (r−dF (r))]

= 0.

In other words, we have f(y) ≡ 0 (mod pd+1) in OK , which is equivalent to the desired inequality |f(y)|K ≤
λd+1.
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