
Lecture 14: The Metric Structure of Y

November 2, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C[ of characteristic p. Fix real
numbers 0 < a ≤ b < 1 and set α = − log(a), β = − log(b). Recall that our goal is to prove the following:

Theorem 1 (Existence of Roots, Version 1). Let f be a nonzero element of B[a,b], and suppose that
∂−vβ(f) 6= ∂+vα(f). Then there is a point y ∈ Y[a,b] such that f(y) = 0.

Note that, in the situation of Theorem 1, we can find some ρ ∈ [a, b] such that ∂−vs(f) 6= ∂+vs(f) for
s = − log(ρ). To prove that Theorem 1 has a root in Y[a,b], it suffices to show that it has a root in Y[ρ,ρ].
That is, we may assume without loss of generality that a = ρ = b. It will therefore suffice to prove the
following special case of Theorem 1:

Theorem 2 (Existence of Roots, Version 2). Let f be a nonzero element of B[ρ,ρ] and set s = − log(ρ). If
∂−vs(f) > ∂+vs(f), then f vanishes at some point y ∈ Y[ρ,ρ].

Note that, using the arguments of Lectures 12 and 13, Theorem 2 is equivalent to the following apparently
stronger statement:

Corollary 3. Let f be a nonzero element of B[ρ,ρ]. Then f admits a factorization

f = g · ξ1 · ξ2 · · · · · ξn,

where each ξi is a distinguished element of Ainf vanishing at some point yi ∈ Y[ρ,ρ], and g is an invertible
element of B[ρ,ρ].

Here the hypothesis that C[ is algebraically closed is essential: if C[ is not algebraically closed, then the
function s 7→ vs(f) can fail to be differentiable due to “zeroes” coming from untilts of finite extension fields
of C[, rather than of C[ itself. To say that C[ is algebraically closed is to say that any polynomial equation
in C[ has a solution. To get from there to solving “analytic” equations like f(y) = 0, we will need to make
some approximation arguments.

Notation 4. Let Y denote the set of isomorphism classes of untilts of C[. We write Y = Y ∪ {0}, where
Y is the set of isomorphism classes of characteristic zero untilts of C[ and 0 denotes the isomorphism class
of the characteristic p untilt (given by C[ itself). For each point y ∈ Y , we let ξy denote a distinguished
element of Ainf which vanishes at y (so ξy is determined up to multiplication by a unit in Ainf); for example,
we can take ξ0 = p.

For every pair of points x, y ∈ Y , we let d(x, y) denote the absolute value |ξx(y)|K , where y = (K, ι). We
will refer to d(x, y) as the distance from x to y. Note that this quantity does not depend on the choice of
distinguished element ξx: if ξ′x is another distinguished element of Ainf vanishing at x, then ξx(y) and ξ′x(y)
differ by multiplication by a unit in OK , and therefore have the same absolute value in K.

Example 5. For y = (K, ι) ∈ Y , we have d(0, y) = |p|K ; this is the “distance from the origin” that we
introduced earlier.
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Proposition 6. The function d : Y × Y → R≥0 is an ultrametric. That is, we have

d(x, y) = 0⇔ x = y

d(x, y) = d(y, x)

d(x, z) ≤ max{d(x, y), d(y, z)}.

Proof. Note that d(x, y) = 0 if and only if the distinguished element ξx vanishes at y, which holds if and
only if x = y.

Fix any pair of points x, y ∈ Y , corresponding to untilts Kx and Ky of C[. Since C[ is algebraically
closed, we can write ξx(y) = c] for some c ∈ C[. Then c belongs to the maximal ideal m[C , so that ξx and
ξx − [c] have the same image under the map

Ainf = W (O[C)→W (O[C /m
[
C) = W (k).

It follows that ξx− [c] is also a distinguished element of Ainf which vanishes at the point y. We may therefore
assume without loss of generality that ξy = ξx − [c], so that

d(y, x) = |ξy(x)|Kx = |ξx(x)− c]|Kx = |c|C[ = |c]|Ky = |ξx(y)|C[ = d(x, y);

here we write c] both for the image of [c] in Kx and its image in Ky.

To prove the third assertion, suppose we are given a point z ∈ Y corresponding to an untilt Kz. We then
have

d(x, z) = |ξx(z)|Kz = |ξy(z) + c]|Kz ≤ max(|ξy(z)|Kz , |c]|Kz ) = max(d(y, z), d(x, y))

(where this time c] denotes the image of [c] in Kz).

Proposition 7. The set Y is complete with respect to the metric d(x, y).

Proof. Suppose we are given a Cauchy sequence y0, y1, y2, . . . ∈ Y . Let ξy0 be a distinguished element of
Ainf which vanishes at y0. Arguing as in the proof of Proposition 6, we can choose a sequence distinguished
elements ξyn vanishing at the points yn, such that

ξyn = ξyn−1
+ [cn],

where cn is an element of C[ satisfying |cn|C[ = d(yn−1, yn).

Let π ∈ C[ be a pseudo-uniformizer. Since the sequence {yn} is Cauchy, the sum∑
n>0

[cn]

converges with respect to the [π]-adic topology on Ainf (recall that Ainf is [π]-adically complete, since it is

p-adically complete and p-torsion free and O[C = Ainf/(p) is π-adically complete and π-torsion free). Set
ξ = ξy0 +

∑
n>0[cn]. Then ξ and ξy0 have the same image under the map

Ainf = W (O[C)→W (O[C /m
[
C) = W (k),

so ξ is a distinguished element of Ainf vanishing at some point y ∈ Y . We then compute

d(y, ym) = |ξ(ym)|Kym = |ξm(ym) +
∑
n>m

c]n|Kym ≤ max{|cn|C[}n>m,

which tends to zero as m→∞. It follows that the Cauchy sequence {yn} converges to y.
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Let us now return to the situation of Theorem 2. Fix 0 < ρ < 1, and let f be a nonzero element of
B[ρ,ρ]. Recall that, if y = (K, ι) is a point of Y satisfying d(0, y) = |p|K = ρ, then we have |f(y)|K ≤ |f |ρ.
In general, this inequality is strict. However, if f is an invertible element of B[ρ,ρ], then we also have

|( 1

f
)(y)|K ≤ |

1

f
|ρ =

1

|f |ρ
,

which implies that |f(y)|K = |f |ρ.
Let us say that an element f of B[ρ,ρ] is good if it satisfies the conclusion of Corollary 3: that is, if f

admits a factorization
f = g · ξ1 · ξ2 · · · · · ξn,

where g is an invertible element of B[ρ,ρ] and each ξi is a distinguished element vanishing at some point
yi ∈ Y[a,b]. We then compute

|f(y)|K = |g(y)|K · |ξ1(y)|K · · · · · |ξn(y)|K

= |g|ρ ·
n∏
i=1

d(yi, y)

=
|f |ρ∏n
i=1 |ξi|ρ

n∏
i=1

d(yi, y)

= |f |ρ
n∏
i=1

d(yi, y)

ρ
.

In other words, in particular, we see that the equality |f(y)|K = |f |ρ holds in the generic case where y is
at distance ρ from each of the zeroes yi of the function f . However, we have a strict inequality whenever
d(yi, y) < ρ for some i.

Proposition 8. Let f be a good element of B[ρ,ρ] having n zeroes in Y[ρ,ρ] (counted with multiplicity), and
let g be any nonzero element of B[ρ,ρ]. Suppose that |f − g|ρ < |f |ρ. Then, for any point y = (K, ι) ∈ Y[ρ,ρ]
satisfying g(y) = 0, there exists a point y′ ∈ B[ρ,ρ] satisfying f(y′) = 0 and d(y, y′) < ρ(

|f−g|ρ
|f |ρ )1/n.

Proof. Let y1, . . . , yn be the zeroes of f (counted with multiplicity). If g(y) = 0, we have

|f − g|ρ ≥ |(f − g)(y)|K
= |f(y)|K

= |f |ρ
n∏
i=1

d(yi, y)

ρ
.

It follows that at least one of the factors d(yi,y)
ρ must be less than or equal to (

|f−g|ρ
|f |ρ )1/n.

Corollary 9. Let f be a nonzero element of B[ρ,ρ] which is given as the limit of a Cauchy sequence {fi}
with respect to the Gauss norm | • |ρ. Suppose that each fi is good. If ∂−vs(f) > ∂+vs(f) for s = − log(ρ),
then f vanishes at some point in Y[ρ,ρ].

Proof. Passing to a subsequence, we may assume that

vs(f) = vs(fi) ∂−vs(f) = ∂−vs(fi) ∂+vs(f) = ∂+vs(fi)

|fi+1 − fi|ρ < |f |ρ
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for all i. Set n = ∂−vs(f) − ∂+vs(f) > 0. Then each fi has exactly n zeroes in Y[ρ,ρ], counted with
multiplicity. Applying Proposition 8, we can choose a sequence {yi} in Y[ρ,ρ] such that fi(yi) = 0 and

d(yi+1, yi) ≤ ρ(
|fi+1 − fi|ρ
|f |ρ

)1/n

It follows that the sequence {yi} is Cauchy and therefore converges to some point y ∈ Y (Proposition 7).
We then have

|fi(y)|K ≤ |fi|ρ ·
d(yi, y)

ρ
= |f |ρ ·

d(yi, y)

ρ
→ 0

as i→∞, so f(y) = limi→∞ fi(y) vanishes in K.
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