# Lecture 14: The Metric Structure of $Y$ 

November 2, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field $C^{b}$ of characteristic $p$. Fix real numbers $0<a \leq b<1$ and set $\alpha=-\log (a), \beta=-\log (b)$. Recall that our goal is to prove the following:

Theorem 1 (Existence of Roots, Version 1). Let $f$ be a nonzero element of $B_{[a, b]}$, and suppose that $\partial_{-} v_{\beta}(f) \neq \partial_{+} v_{\alpha}(f)$. Then there is a point $y \in Y_{[a, b]}$ such that $f(y)=0$.

Note that, in the situation of Theorem 1, we can find some $\rho \in[a, b]$ such that $\partial_{-} v_{s}(f) \neq \partial_{+} v_{s}(f)$ for $s=-\log (\rho)$. To prove that Theorem 1 has a root in $Y_{[a, b]}$, it suffices to show that it has a root in $Y_{[\rho, \rho]}$. That is, we may assume without loss of generality that $a=\rho=b$. It will therefore suffice to prove the following special case of Theorem 1:
Theorem 2 (Existence of Roots, Version 2). Let $f$ be a nonzero element of $B_{[\rho, \rho]}$ and set $s=-\log (\rho)$. If $\partial_{-} v_{s}(f)>\partial_{+} v_{s}(f)$, then $f$ vanishes at some point $y \in Y_{[\rho, \rho]}$.

Note that, using the arguments of Lectures 12 and 13 , Theorem 2 is equivalent to the following apparently stronger statement:
Corollary 3. Let $f$ be a nonzero element of $B_{[\rho, \rho]}$. Then $f$ admits a factorization

$$
f=g \cdot \xi_{1} \cdot \xi_{2} \cdots \cdots \xi_{n},
$$

where each $\xi_{i}$ is a distinguished element of $\mathbf{A}_{\text {inf }}$ vanishing at some point $y_{i} \in Y_{[\rho, \rho]}$, and $g$ is an invertible element of $B_{[\rho, \rho]}$.

Here the hypothesis that $C^{b}$ is algebraically closed is essential: if $C^{b}$ is not algebraically closed, then the function $s \mapsto v_{s}(f)$ can fail to be differentiable due to "zeroes" coming from untilts of finite extension fields of $C^{b}$, rather than of $C^{b}$ itself. To say that $C^{b}$ is algebraically closed is to say that any polynomial equation in $C^{b}$ has a solution. To get from there to solving "analytic" equations like $f(y)=0$, we will need to make some approximation arguments.

Notation 4. Let $\bar{Y}$ denote the set of isomorphism classes of untilts of $C^{b}$. We write $\bar{Y}=Y \cup\{0\}$, where $Y$ is the set of isomorphism classes of characteristic zero untilts of $C^{b}$ and 0 denotes the isomorphism class of the characteristic $p$ untilt (given by $C^{b}$ itself). For each point $y \in \bar{Y}$, we let $\xi_{y}$ denote a distinguished element of $\mathbf{A}_{\text {inf }}$ which vanishes at $y$ (so $\xi_{y}$ is determined up to multiplication by a unit in $\mathbf{A}_{\text {inf }}$ ); for example, we can take $\xi_{0}=p$.

For every pair of points $x, y \in \bar{Y}$, we let $d(x, y)$ denote the absolute value $\left|\xi_{x}(y)\right|_{K}$, where $y=(K, \iota)$. We will refer to $d(x, y)$ as the distance from $x$ to $y$. Note that this quantity does not depend on the choice of distinguished element $\xi_{x}$ : if $\xi_{x}^{\prime}$ is another distinguished element of $\mathbf{A}_{\text {inf }}$ vanishing at $x$, then $\xi_{x}(y)$ and $\xi_{x}^{\prime}(y)$ differ by multiplication by a unit in $\mathcal{O}_{K}$, and therefore have the same absolute value in $K$.

Example 5. For $y=(K, \iota) \in \bar{Y}$, we have $d(0, y)=|p|_{K}$; this is the "distance from the origin" that we introduced earlier.

Proposition 6. The function $d: \bar{Y} \times \bar{Y} \rightarrow \mathbf{R}_{\geq 0}$ is an ultrametric. That is, we have

$$
\begin{gathered}
d(x, y)=0 \Leftrightarrow x=y \\
d(x, y)=d(y, x) \\
d(x, z) \leq \max \{d(x, y), d(y, z)\}
\end{gathered}
$$

Proof. Note that $d(x, y)=0$ if and only if the distinguished element $\xi_{x}$ vanishes at $y$, which holds if and only if $x=y$.

Fix any pair of points $x, y \in \bar{Y}$, corresponding to untilts $K_{x}$ and $K_{y}$ of $C^{b}$. Since $C^{b}$ is algebraically closed, we can write $\xi_{x}(y)=c^{\sharp}$ for some $c \in C^{b}$. Then $c$ belongs to the maximal ideal $\mathfrak{m}_{C}^{b}$, so that $\xi_{x}$ and $\xi_{x}-[c]$ have the same image under the map

$$
\mathbf{A}_{\mathrm{inf}}=W\left(\mathcal{O}_{C}^{b}\right) \rightarrow W\left(\mathcal{O}_{C}^{b} / \mathfrak{m}_{C}^{b}\right)=W(k) .
$$

It follows that $\xi_{x}-[c]$ is also a distinguished element of $\mathbf{A}_{\text {inf }}$ which vanishes at the point $y$. We may therefore assume without loss of generality that $\xi_{y}=\xi_{x}-[c]$, so that

$$
d(y, x)=\left|\xi_{y}(x)\right|_{K_{x}}=\left|\xi_{x}(x)-c^{\sharp}\right|_{K_{x}}=|c|_{C^{b}}=\left|c^{\sharp}\right|_{K_{y}}=\left|\xi_{x}(y)\right|_{C^{b}}=d(x, y) ;
$$

here we write $c^{\sharp}$ both for the image of $[c]$ in $K_{x}$ and its image in $K_{y}$.
To prove the third assertion, suppose we are given a point $z \in \bar{Y}$ corresponding to an untilt $K_{z}$. We then have

$$
d(x, z)=\left|\xi_{x}(z)\right|_{K_{z}}=\left|\xi_{y}(z)+c^{\sharp}\right|_{K_{z}} \leq \max \left(\left|\xi_{y}(z)\right|_{K_{z}},\left|c^{\sharp}\right|_{K_{z}}\right)=\max (d(y, z), d(x, y))
$$

(where this time $c^{\sharp}$ denotes the image of $[c]$ in $K_{z}$ ).
Proposition 7. The set $\bar{Y}$ is complete with respect to the metric $d(x, y)$.
Proof. Suppose we are given a Cauchy sequence $y_{0}, y_{1}, y_{2}, \ldots \in \bar{Y}$. Let $\xi_{y_{0}}$ be a distinguished element of $\mathbf{A}_{\text {inf }}$ which vanishes at $y_{0}$. Arguing as in the proof of Proposition 6, we can choose a sequence distinguished elements $\xi_{y_{n}}$ vanishing at the points $y_{n}$, such that

$$
\xi_{y_{n}}=\xi_{y_{n-1}}+\left[c_{n}\right]
$$

where $c_{n}$ is an element of $C^{b}$ satisfying $\left|c_{n}\right|_{C^{b}}=d\left(y_{n-1}, y_{n}\right)$.
Let $\pi \in C^{b}$ be a pseudo-uniformizer. Since the sequence $\left\{y_{n}\right\}$ is Cauchy, the sum

$$
\sum_{n>0}\left[c_{n}\right]
$$

converges with respect to the $[\pi]$-adic topology on $\mathbf{A}_{\text {inf }}$ (recall that $\mathbf{A}_{\text {inf }}$ is $[\pi]$-adically complete, since it is $p$-adically complete and $p$-torsion free and $\mathcal{O}_{C}^{b}=\mathbf{A}_{\mathrm{inf}} /(p)$ is $\pi$-adically complete and $\pi$-torsion free). Set $\xi=\xi_{y_{0}}+\sum_{n>0}\left[c_{n}\right]$. Then $\xi$ and $\xi_{y_{0}}$ have the same image under the map

$$
\mathbf{A}_{\mathrm{inf}}=W\left(\mathcal{O}_{C}^{b}\right) \rightarrow W\left(\mathcal{O}_{C}^{b} / \mathfrak{m}_{C}^{b}\right)=W(k),
$$

so $\xi$ is a distinguished element of $\mathbf{A}_{\mathrm{inf}}$ vanishing at some point $y \in \bar{Y}$. We then compute

$$
d\left(y, y_{m}\right)=\left|\xi\left(y_{m}\right)\right|_{K_{y_{m}}}=\left|\xi_{m}\left(y_{m}\right)+\sum_{n>m} c_{n}^{\sharp}\right|_{K_{y_{m}}} \leq \max \left\{\left|c_{n}\right|_{C^{b}}\right\}_{n>m}
$$

which tends to zero as $m \rightarrow \infty$. It follows that the Cauchy sequence $\left\{y_{n}\right\}$ converges to $y$.

Let us now return to the situation of Theorem 2. Fix $0<\rho<1$, and let $f$ be a nonzero element of $B_{[\rho, \rho]}$. Recall that, if $y=(K, \iota)$ is a point of $Y$ satisfying $d(0, y)=|p|_{K}=\rho$, then we have $|f(y)|_{K} \leq|f|_{\rho}$. In general, this inequality is strict. However, if $f$ is an invertible element of $B_{[\rho, \rho]}$, then we also have

$$
\left|\left(\frac{1}{f}\right)(y)\right|_{K} \leq\left|\frac{1}{f}\right|_{\rho}=\frac{1}{|f|_{\rho}}
$$

which implies that $|f(y)|_{K}=|f|_{\rho}$.
Let us say that an element $f$ of $B_{[\rho, \rho]}$ is good if it satisfies the conclusion of Corollary 3: that is, if $f$ admits a factorization

$$
f=g \cdot \xi_{1} \cdot \xi_{2} \cdots \cdots \xi_{n}
$$

where $g$ is an invertible element of $B_{[\rho, \rho]}$ and each $\xi_{i}$ is a distinguished element vanishing at some point $y_{i} \in Y_{[a, b]}$. We then compute

$$
\begin{aligned}
|f(y)|_{K} & =|g(y)|_{K} \cdot\left|\xi_{1}(y)\right|_{K} \cdots \cdot\left|\xi_{n}(y)\right|_{K} \\
& =|g|_{\rho} \cdot \prod_{i=1}^{n} d\left(y_{i}, y\right) \\
& =\frac{|f|_{\rho}}{\prod_{i=1}^{n}\left|\xi_{i}\right|_{\rho}} \prod_{i=1}^{n} d\left(y_{i}, y\right) \\
& =|f|_{\rho} \prod_{i=1}^{n} \frac{d\left(y_{i}, y\right)}{\rho}
\end{aligned}
$$

In other words, in particular, we see that the equality $|f(y)|_{K}=|f|_{\rho}$ holds in the generic case where $y$ is at distance $\rho$ from each of the zeroes $y_{i}$ of the function $f$. However, we have a strict inequality whenever $d\left(y_{i}, y\right)<\rho$ for some $i$.

Proposition 8. Let $f$ be a good element of $B_{[\rho, \rho]}$ having $n$ zeroes in $Y_{[\rho, \rho]}$ (counted with multiplicity), and let $g$ be any nonzero element of $B_{[\rho, \rho]}$. Suppose that $|f-g|_{\rho}<|f|_{\rho}$. Then, for any point $y=(K, \iota) \in Y_{[\rho, \rho]}$ satisfying $g(y)=0$, there exists a point $y^{\prime} \in B_{[\rho, \rho]}$ satisfying $f\left(y^{\prime}\right)=0$ and $d\left(y, y^{\prime}\right)<\rho\left(\frac{|f-g|_{\rho}}{|f|_{\rho}}\right)^{1 / n}$.

Proof. Let $y_{1}, \ldots, y_{n}$ be the zeroes of $f$ (counted with multiplicity). If $g(y)=0$, we have

$$
\begin{aligned}
|f-g|_{\rho} & \geq|(f-g)(y)|_{K} \\
& =|f(y)|_{K} \\
& =|f|_{\rho} \prod_{i=1}^{n} \frac{d\left(y_{i}, y\right)}{\rho}
\end{aligned}
$$

It follows that at least one of the factors $\frac{d\left(y_{i}, y\right)}{\rho}$ must be less than or equal to $\left(\frac{|f-g|_{\rho}}{|f|_{\rho}}\right)^{1 / n}$.
Corollary 9. Let $f$ be a nonzero element of $B_{[\rho, \rho]}$ which is given as the limit of a Cauchy sequence $\left\{f_{i}\right\}$ with respect to the Gauss norm $|\bullet|_{\rho}$. Suppose that each $f_{i}$ is good. If $\partial_{-} v_{s}(f)>\partial_{+} v_{s}(f)$ for $s=-\log (\rho)$, then $f$ vanishes at some point in $Y_{[\rho, \rho]}$.

Proof. Passing to a subsequence, we may assume that

$$
\begin{gathered}
v_{s}(f)=v_{s}\left(f_{i}\right) \quad \partial_{-} v_{s}(f)=\partial_{-} v_{s}\left(f_{i}\right) \quad \partial_{+} v_{s}(f)=\partial_{+} v_{s}\left(f_{i}\right) \\
\left|f_{i+1}-f_{i}\right|_{\rho}<|f|_{\rho}
\end{gathered}
$$

for all $i$. Set $n=\partial_{-} v_{s}(f)-\partial_{+} v_{s}(f)>0$. Then each $f_{i}$ has exactly $n$ zeroes in $Y_{[\rho, \rho]}$, counted with multiplicity. Applying Proposition 8, we can choose a sequence $\left\{y_{i}\right\}$ in $Y_{[\rho, \rho]}$ such that $f_{i}\left(y_{i}\right)=0$ and

$$
d\left(y_{i+1}, y_{i}\right) \leq \rho\left(\frac{\left|f_{i+1}-f_{i}\right|_{\rho}}{|f|_{\rho}}\right)^{1 / n}
$$

It follows that the sequence $\left\{y_{i}\right\}$ is Cauchy and therefore converges to some point $y \in \bar{Y}$ (Proposition 7). We then have

$$
\left|f_{i}(y)\right|_{K} \leq\left|f_{i}\right|_{\rho} \cdot \frac{d\left(y_{i}, y\right)}{\rho}=|f|_{\rho} \cdot \frac{d\left(y_{i}, y\right)}{\rho} \rightarrow 0
$$

as $i \rightarrow \infty$, so $f(y)=\lim _{i \rightarrow \infty} f_{i}(y)$ vanishes in $K$.

