Lecture 14: The Metric Structure of Y

November 2, 2018

Throughout this lecture, we fix an algebraically closed perfected field C^{\flat} of characteristic p. Fix real numbers $0 < a \le b < 1$ and set $\alpha = -\log(a)$, $\beta = -\log(b)$. Recall that our goal is to prove the following:

Theorem 1 (Existence of Roots, Version 1). Let f be a nonzero element of $B_{[a,b]}$, and suppose that $\partial_{-}v_{\beta}(f) \neq \partial_{+}v_{\alpha}(f)$. Then there is a point $y \in Y_{[a,b]}$ such that f(y) = 0.

Note that, in the situation of Theorem 1, we can find some $\rho \in [a, b]$ such that $\partial_{-}v_{s}(f) \neq \partial_{+}v_{s}(f)$ for $s = -\log(\rho)$. To prove that Theorem 1 has a root in $Y_{[a,b]}$, it suffices to show that it has a root in $Y_{[\rho,\rho]}$. That is, we may assume without loss of generality that $a = \rho = b$. It will therefore suffice to prove the following special case of Theorem 1:

Theorem 2 (Existence of Roots, Version 2). Let f be a nonzero element of $B_{[\rho,\rho]}$ and set $s = -\log(\rho)$. If $\partial_{-}v_{s}(f) > \partial_{+}v_{s}(f)$, then f vanishes at some point $y \in Y_{[\rho,\rho]}$.

Note that, using the arguments of Lectures 12 and 13, Theorem 2 is equivalent to the following apparently stronger statement:

Corollary 3. Let f be a nonzero element of $B_{[\rho,\rho]}$. Then f admits a factorization

$$f = g \cdot \xi_1 \cdot \xi_2 \cdot \dots \cdot \xi_n,$$

where each ξ_i is a distinguished element of \mathbf{A}_{inf} vanishing at some point $y_i \in Y_{[\rho,\rho]}$, and g is an invertible element of $B_{[\rho,\rho]}$.

Here the hypothesis that C^{\flat} is algebraically closed is essential: if C^{\flat} is not algebraically closed, then the function $s \mapsto v_s(f)$ can fail to be differentiable due to "zeroes" coming from untilts of finite extension fields of C^{\flat} , rather than of C^{\flat} itself. To say that C^{\flat} is algebraically closed is to say that any *polynomial* equation in C^{\flat} has a solution. To get from there to solving "analytic" equations like f(y) = 0, we will need to make some approximation arguments.

Notation 4. Let \overline{Y} denote the set of isomorphism classes of untilts of C^{\flat} . We write $\overline{Y} = Y \cup \{0\}$, where Y is the set of isomorphism classes of characteristic zero untilts of C^{\flat} and 0 denotes the isomorphism classes of the characteristic p untilt (given by C^{\flat} itself). For each point $y \in \overline{Y}$, we let ξ_y denote a distinguished element of \mathbf{A}_{inf} which vanishes at y (so ξ_y is determined up to multiplication by a unit in \mathbf{A}_{inf}); for example, we can take $\xi_0 = p$.

For every pair of points $x, y \in \overline{Y}$, we let d(x, y) denote the absolute value $|\xi_x(y)|_K$, where $y = (K, \iota)$. We will refer to d(x, y) as the *distance from* x to y. Note that this quantity does not depend on the choice of distinguished element ξ_x : if ξ'_x is another distinguished element of \mathbf{A}_{inf} vanishing at x, then $\xi_x(y)$ and $\xi'_x(y)$ differ by multiplication by a unit in \mathcal{O}_K , and therefore have the same absolute value in K.

Example 5. For $y = (K, \iota) \in \overline{Y}$, we have $d(0, y) = |p|_K$; this is the "distance from the origin" that we introduced earlier.

Proposition 6. The function $d: \overline{Y} \times \overline{Y} \to \mathbf{R}_{>0}$ is an ultrametric. That is, we have

$$\begin{aligned} d(x,y) &= 0 \Leftrightarrow x = y \\ d(x,y) &= d(y,x) \\ d(x,z) &\leq \max\{d(x,y), d(y,z)\}. \end{aligned}$$

Proof. Note that d(x, y) = 0 if and only if the distinguished element ξ_x vanishes at y, which holds if and only if x = y.

Fix any pair of points $x, y \in \overline{Y}$, corresponding to untilts K_x and K_y of C^{\flat} . Since C^{\flat} is algebraically closed, we can write $\xi_x(y) = c^{\sharp}$ for some $c \in C^{\flat}$. Then c belongs to the maximal ideal \mathfrak{m}_C^{\flat} , so that ξ_x and $\xi_x - [c]$ have the same image under the map

$$\mathbf{A}_{\inf} = W(\mathfrak{O}_C^{\flat}) \to W(\mathfrak{O}_C^{\flat}/\mathfrak{m}_C^{\flat}) = W(k).$$

It follows that $\xi_x - [c]$ is also a distinguished element of \mathbf{A}_{inf} which vanishes at the point y. We may therefore assume without loss of generality that $\xi_y = \xi_x - [c]$, so that

$$d(y,x) = |\xi_y(x)|_{K_x} = |\xi_x(x) - c^{\sharp}|_{K_x} = |c|_{C^{\flat}} = |c^{\sharp}|_{K_y} = |\xi_x(y)|_{C^{\flat}} = d(x,y);$$

here we write c^{\sharp} both for the image of [c] in K_x and its image in K_y .

To prove the third assertion, suppose we are given a point $z \in \overline{Y}$ corresponding to an until K_z . We then have

$$d(x,z) = |\xi_x(z)|_{K_z} = |\xi_y(z) + c^{\sharp}|_{K_z} \le \max(|\xi_y(z)|_{K_z}, |c^{\sharp}|_{K_z}) = \max(d(y,z), d(x,y))$$

(where this time c^{\sharp} denotes the image of [c] in K_z).

Proposition 7. The set \overline{Y} is complete with respect to the metric d(x, y).

Proof. Suppose we are given a Cauchy sequence $y_0, y_1, y_2, \ldots \in \overline{Y}$. Let ξ_{y_0} be a distinguished element of \mathbf{A}_{inf} which vanishes at y_0 . Arguing as in the proof of Proposition 6, we can choose a sequence distinguished elements ξ_{y_n} vanishing at the points y_n , such that

$$\xi_{y_n} = \xi_{y_{n-1}} + [c_n],$$

where c_n is an element of C^{\flat} satisfying $|c_n|_{C^{\flat}} = d(y_{n-1}, y_n)$.

Let $\pi \in C^{\flat}$ be a pseudo-uniformizer. Since the sequence $\{y_n\}$ is Cauchy, the sum

$$\sum_{n>0} [c_n]$$

converges with respect to the $[\pi]$ -adic topology on \mathbf{A}_{inf} (recall that \mathbf{A}_{inf} is $[\pi]$ -adically complete, since it is *p*-adically complete and *p*-torsion free and $\mathcal{O}_C^{\flat} = \mathbf{A}_{inf}/(p)$ is π -adically complete and π -torsion free). Set $\xi = \xi_{y_0} + \sum_{n>0} [c_n]$. Then ξ and ξ_{y_0} have the same image under the map

$$\mathbf{A}_{\inf} = W(\mathbb{O}_C^{\flat}) \to W(\mathbb{O}_C^{\flat} / \mathfrak{m}_C^{\flat}) = W(k),$$

so ξ is a distinguished element of \mathbf{A}_{inf} vanishing at some point $y \in \overline{Y}$. We then compute

$$d(y, y_m) = |\xi(y_m)|_{K_{y_m}} = |\xi_m(y_m) + \sum_{n > m} c_n^{\sharp}|_{K_{y_m}} \le \max\{|c_n|_{C^{\flat}}\}_{n > m},$$

which tends to zero as $m \to \infty$. It follows that the Cauchy sequence $\{y_n\}$ converges to y.

Let us now return to the situation of Theorem 2. Fix $0 < \rho < 1$, and let f be a nonzero element of $B_{[\rho,\rho]}$. Recall that, if $y = (K,\iota)$ is a point of Y satisfying $d(0,y) = |p|_K = \rho$, then we have $|f(y)|_K \leq |f|_{\rho}$. In general, this inequality is strict. However, if f is an *invertible* element of $B_{[\rho,\rho]}$, then we also have

$$|(\frac{1}{f})(y)|_{K} \le |\frac{1}{f}|_{\rho} = \frac{1}{|f|_{\rho}},$$

which implies that $|f(y)|_K = |f|_{\rho}$.

Let us say that an element f of $B_{[\rho,\rho]}$ is good if it satisfies the conclusion of Corollary 3: that is, if f admits a factorization

$$f = g \cdot \xi_1 \cdot \xi_2 \cdot \cdots \cdot \xi_n,$$

where g is an invertible element of $B_{[\rho,\rho]}$ and each ξ_i is a distinguished element vanishing at some point $y_i \in Y_{[a,b]}$. We then compute

$$\begin{split} |f(y)|_{K} &= |g(y)|_{K} \cdot |\xi_{1}(y)|_{K} \cdot \dots \cdot |\xi_{n}(y)|_{K} \\ &= |g|_{\rho} \cdot \prod_{i=1}^{n} d(y_{i}, y) \\ &= \frac{|f|_{\rho}}{\prod_{i=1}^{n} |\xi_{i}|_{\rho}} \prod_{i=1}^{n} d(y_{i}, y) \\ &= |f|_{\rho} \prod_{i=1}^{n} \frac{d(y_{i}, y)}{\rho}. \end{split}$$

In other words, in particular, we see that the equality $|f(y)|_K = |f|_{\rho}$ holds in the generic case where y is at distance ρ from each of the zeroes y_i of the function f. However, we have a strict inequality whenever $d(y_i, y) < \rho$ for some i.

Proposition 8. Let f be a good element of $B_{[\rho,\rho]}$ having n zeroes in $Y_{[\rho,\rho]}$ (counted with multiplicity), and let g be any nonzero element of $B_{[\rho,\rho]}$. Suppose that $|f - g|_{\rho} < |f|_{\rho}$. Then, for any point $y = (K, \iota) \in Y_{[\rho,\rho]}$ satisfying g(y) = 0, there exists a point $y' \in B_{[\rho,\rho]}$ satisfying f(y') = 0 and $d(y, y') < \rho(\frac{|f - g|_{\rho}}{|f|_{\rho}})^{1/n}$.

Proof. Let y_1, \ldots, y_n be the zeroes of f (counted with multiplicity). If g(y) = 0, we have

$$\begin{aligned} f - g|_{\rho} &\geq |(f - g)(y)|_{K} \\ &= |f(y)|_{K} \\ &= |f|_{\rho} \prod_{i=1}^{n} \frac{d(y_{i}, y)}{\rho}. \end{aligned}$$

It follows that at least one of the factors $\frac{d(y_i,y)}{\rho}$ must be less than or equal to $(\frac{|f-g|_{\rho}}{|f|_{\rho}})^{1/n}$.

Corollary 9. Let f be a nonzero element of $B_{[\rho,\rho]}$ which is given as the limit of a Cauchy sequence $\{f_i\}$ with respect to the Gauss norm $|\bullet|_{\rho}$. Suppose that each f_i is good. If $\partial_-v_s(f) > \partial_+v_s(f)$ for $s = -\log(\rho)$, then f vanishes at some point in $Y_{[\rho,\rho]}$.

Proof. Passing to a subsequence, we may assume that

$$v_s(f) = v_s(f_i) \qquad \partial_- v_s(f) = \partial_- v_s(f_i) \qquad \partial_+ v_s(f) = \partial_+ v_s(f_i)$$
$$|f_{i+1} - f_i|_{\rho} < |f|_{\rho}$$

for all *i*. Set $n = \partial_- v_s(f) - \partial_+ v_s(f) > 0$. Then each f_i has exactly *n* zeroes in $Y_{[\rho,\rho]}$, counted with multiplicity. Applying Proposition 8, we can choose a sequence $\{y_i\}$ in $Y_{[\rho,\rho]}$ such that $f_i(y_i) = 0$ and

$$d(y_{i+1}, y_i) \le \rho(\frac{|f_{i+1} - f_i|_{\rho}}{|f|_{\rho}})^{1/n}$$

It follows that the sequence $\{y_i\}$ is Cauchy and therefore converges to some point $y \in \overline{Y}$ (Proposition 7). We then have

$$|f_i(y)|_K \le |f_i|_{\rho} \cdot \frac{d(y_i, y)}{\rho} = |f|_{\rho} \cdot \frac{d(y_i, y)}{\rho} \to 0$$

as $i \to \infty$, so $f(y) = \lim_{i \to \infty} f_i(y)$ vanishes in K.