Lecture 14: The Metric Structure of Y

November 2, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C” of characteristic p. Fix real
numbers 0 < a < b < 1 and set a = —log(a), B = —log(b). Recall that our goal is to prove the following:

Theorem 1 (Existence of Roots, Version 1). Let f be a nonzero element of B,y, and suppose that
O0_vg(f) # 04va(f). Then there is a point y € Y,y such that f(y) = 0.

Note that, in the situation of Theorem 1, we can find some p € [a,b] such that O_vs(f) # d;vs(f) for
s = —log(p). To prove that Theorem 1 has a root in Y[, ;, it suffices to show that it has a root in Y}, ,.
That is, we may assume without loss of generality that a = p = b. It will therefore suffice to prove the
following special case of Theorem 1:

Theorem 2 (Existence of Roots, Version 2). Let f be a nonzero element of By, , and set s = —log(p). If
O_vs(f) > 04vs(f), then f vanishes at some point y € Yy, ;.

Note that, using the arguments of Lectures 12 and 13, Theorem 2 is equivalent to the following apparently
stronger statement:

Corollary 3. Let f be a nonzero element of By, ;. Then f admits a factorization

f=g-6-6

where each & is a distinguished element of Ainr vanishing at some point y; € Y|, ,, and g is an invertible
element of B, -

Here the hypothesis that C” is algebraically closed is essential: if C® is not algebraically closed, then the
function s — vs(f) can fail to be differentiable due to “zeroes” coming from untilts of finite extension fields
of C”, rather than of C” itself. To say that C” is algebraically closed is to say that any polynomial equation
in C® has a solution. To get from there to solving “analytic” equations like f(y) = 0, we will need to make
some approximation arguments.

Notation 4. Let Y denote the set of isomorphism classes of untilts of C*. We write Y = Y U {0}, where
Y is the set of isomorphism classes of characteristic zero untilts of C” and 0 denotes the isomorphism class
of the characteristic p untilt (given by C” itself). For each point y € Y, we let &, denote a distinguished
element of A;,s which vanishes at y (so £, is determined up to multiplication by a unit in Aj,¢); for example,
we can take &y = p.

For every pair of points z,y € Y, we let d(z,y) denote the absolute value |, (y)|x, where y = (K,1). We
will refer to d(z,y) as the distance from x to y. Note that this quantity does not depend on the choice of
distinguished element &,: if £, is another distinguished element of Aj,¢ vanishing at x, then &,(y) and &, (y)
differ by multiplication by a unit in Ok, and therefore have the same absolute value in K.

Example 5. For y = (K,.) € Y, we have d(0,y) = |p|x; this is the “distance from the origin” that we
introduced earlier.



Proposition 6. The function d:Y xY — Rsq is an ultrametric. That is, we have
dz,y) =0 z=y

d(z,y) = d(y, =)
d(z,z) < max{d(x,y),d(y,z)}.
Proof. Note that d(z,y) = 0 if and only if the distinguished element £, vanishes at y, which holds if and
only if x = y.

Fix any pair of points z,y € Y, corresponding to untilts K, and K, of C”. Since C” is algebraically
closed, we can write &,(y) = ¢! for some ¢ € C”. Then ¢ belongs to the maximal ideal mbc, so that &, and
&z — [¢] have the same image under the map

Ains = W(03) = W(OL /m2) = W (k).

It follows that &, — [c] is also a distinguished element of A;,¢ which vanishes at the point y. We may therefore
assume without loss of generality that £, = £, — [c|, so that

d(y, ) = |&(@)|x, = & (@) = |k, = Iclo» = |k, = & (¥)ler = d(z,y);

here we write ¢ both for the image of [c] in K, and its image in K.

To prove the third assertion, suppose we are given a point z € Y corresponding to an untilt K,. We then
have

d(w,2) = &)K. = [6(2) + k. < max(|&y(2)]x.. [¢|x.) = max(d(y, 2), d(x,y))
(where this time ¢f denotes the image of [c] in K). O

Proposition 7. The set Y is complete with respect to the metric d(x,y).

Proof. Suppose we are given a Cauchy sequence yo,y1,92,... € Y. Let &, be a distinguished element of
A, ¢ which vanishes at yg. Arguing as in the proof of Proposition 6, we can choose a sequence distinguished
elements £, vanishing at the points y,,, such that

€y = &y oy +[Cnl;

where ¢, is an element of C” satisfying |c,|c» = d(Yn_1,Yn)-

Let m € C” be a pseudo-uniformizer. Since the sequence {yn} is Cauchy, the sum

Z [Cn]

n>0

converges with respect to the [r]-adic topology on Ajy¢ (recall that A,y is [7]-adically complete, since it is
p-adically complete and p-torsion free and Obc = Ajut/(p) is m-adically complete and m-torsion free). Set
§ =&y + 2 nsolcn]. Then & and ,, have the same image under the map

Aing = W(03) = W(Oy /my) = W (k),

so ¢ is a distinguished element of A, vanishing at some point y € Y. We then compute

Ay, ym) = [EWm)lx,,, = em(ym) + Y chlx,, <max{|calcs bnsm,

n>m

which tends to zero as m — oo. It follows that the Cauchy sequence {y,} converges to y. O



Let us now return to the situation of Theorem 2. Fix 0 < p < 1, and let f be a nonzero element of
By, - Recall that, if y = (K,¢) is a point of Y satisfying d(0,y) = |p|x = p, then we have |f(y)|x < |f],.
In general, this inequality is strict. However, if f is an invertible element of B, ;, then we also have

1 1 1
\(?)(ZINK < |?|p = m’

which implies that |f(y)|x = |f],-

Let us say that an element f of By, , is good if it satisfies the conclusion of Corollary 3: that is, if f
admits a factorization

f=g-6 6

where g is an invertible element of By, , and each &; is a distinguished element vanishing at some point
Yi € Y[q,p. We then compute

fWlx = 19l 1& W)k ----- 1€n (¥)]
lglp - Hd(yi,y)

I e, L 40w)

- d iy
=1

p

In other words, in particular, we see that the equality |f(y)|x = |f|, holds in the generic case where y is
at distance p from each of the zeroes y; of the function f. However, we have a strict inequality whenever
d(y;,y) < p for some i.

Proposition 8. Let f be a good element of By, ;) having n zeroes in Y, , (counted with multiplicity), and
let g be any nonzero element of By, ). Suppose that |f — gl, < |fl|,. Then, for any point y = (K1) € Y,

satisfying g(y) = 0, there exists a point y' € By, , satisfying f(y') = 0 and d(y,y’) < p(%)l/".
P

Proof. Let y1,...,yn be the zeroes of f (counted with multiplicity). If g(y) = 0, we have

lf =g, > [(f—9Wlk

= [fWlk
7 4 y)
= I II ="
= P
It follows that at least one of the factors d(y;’y) must be less than or equal to (%)1/ " O

Corollary 9. Let f be a nonzero element of By, ;) which is given as the limit of a Cauchy sequence {f;}
with respect to the Gauss norm | e |,. Suppose that each f; is good. If O_vs(f) > O1vs(f) for s = —log(p),
then f vanishes at some point in Y|, ,.

Proof. Passing to a subsequence, we may assume that
vs(f) =ws(fi)  O-vs(f) =0-vs(fi)  O4vs(f) = Otvs(fi)
|fir1 = filp < |flp



for all 4. Set n = 0_vs(f) — 0yvs(f) > 0. Then each f; has exactly n zeroes in Y}, ,, counted with
multiplicity. Applying Proposition 8, we can choose a sequence {y;} in Y}, , such that f;(y;) = 0 and

| fit1 — fi|P)1/n
| £l

It follows that the sequence {y;} is Cauchy and therefore converges to some point y € Y (Proposition 7).

We then have
d(yi, y) d(yi, y)
p
as i — 00, s0 f(y) = lim;_ fi(y) vanishes in K. O

d(yit+1,yi) < p(

i)k < Ifilp - —0

:|f|p'




