Lecture 13: Digression-Jensen's Formula

October 31, 2018

The constructions of the previous lecture(s) have an analogue in complex analysis. Let a and b be positive real numbers, and let f be a holomorphic function defined on the annulus $\{z \in \mathbf{C}: a<|z|<b\}$ which is not identically zero. Define a function

$$
A(\bullet, f):(\log (a), \log (b)) \rightarrow \mathbf{R} \quad A(s, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log |f(\exp (s+i \theta))| d \theta
$$

In other words, $A(s, f)$ is the average value of $|\log f(z)|$ on the circle $\{z \in \mathbf{C}:|z|=\exp (s)\}$ of radius $\exp (s)$.
Exercise 1. Show that the average $A(s, f)$ is well-defined even when f vanishes at some points of the circle $\{z \in \mathbf{C}:|z|=\exp (s)\}$: that is, the function $\theta \mapsto \log f(\exp (s+i \theta))$ is always integrable, even when it fails to be well-defined at finitely many points. Moreover, if the holomorphic function f is fixed, then $s \mapsto A(s, f)$ is continuous.
Example 2. Let f be the holomorphic function given by $f(z)=z$. Then we have

$$
A(s, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log |\exp (s+i \theta)| d \theta \frac{1}{2 \pi} \int_{0}^{2 \pi} \log (\exp (s)) d \theta=s .
$$

Example 3. Suppose that $f(z)=\exp (g(z))$, for some holomorphic function g on the annulus $\{z \in \mathbf{C}: a<$ $|z|<b\}$. We then have

$$
A(s, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re}(g(\exp (s+i \theta))) d \theta=\operatorname{Re}(\bar{g}(\exp (s))),
$$

where \bar{g} is the radially symmetric holomorphic function given by

$$
\bar{g}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\exp (i \theta) z) d \theta .
$$

Note that \bar{g} is a holomorphic function which is constant on each circle $\{z \in \mathbf{C}:|z|=\exp (s)\}$ and is therefore constant. It follows that the function $s \mapsto A(s, f)$ is constant on the interval $(\log (a), \log (b))$.
Example 4. Suppose that the holomorphic function $f(z)$ has no zeroes in the the annulus $\{z \in \mathbf{C}: a<$ $|z|<b\}$. Then f determines a continuous map

$$
\{z \in \mathbf{C}: a<|z|<b\} \rightarrow \mathbf{C} \backslash\{0\}
$$

which has a well-defined winding number $N \in \mathbf{Z}$ around the origin. This winding number vanishes if and only if f can be written globally as the exponential of another holomorphic function $g(z)$. We can always arrange this by multiplying f by a suitable power of z : that is, we can write $f(z)=z^{N} \exp (g(z))$ for some holomorphic function g on $\{z \in \mathbf{C}: a<|z|<b\}$. In this case, we have

$$
A(s, f)=A\left(s, z^{N}\right)+A(s, \exp (g))=N s+c
$$

for some real constant c, by virtue of Examples 2 and 3.

Let us now return to the case of a general holomorphic function $f:\{z \in \mathbf{C}: a<|z|<b\} \rightarrow \mathbf{C}$. It follows from Example 4 that the function $s \mapsto A(s, f)$ is piecewise linear with integer slopes: it is linear when restricted to any interval $I \subseteq(\log (a), \log (b))$ whose interior does not contain any point of the form $\log |z|$, where z is a zero of f.

The function $s \mapsto A(s, f)$ fails to be linear exactly when s has the form $\log |z|$, where z is a zero of f. It follows from the above reasoning that the difference $\partial_{+} A(s, f)-\partial_{-} A(s, f)$ is given by the difference between the winding numbers of the functions

$$
\theta \mapsto f(\exp (s+\epsilon+i \theta)) \quad \theta \mapsto f(\exp (s-\epsilon+i \theta))
$$

where ϵ is some small real number. This difference is equal to the number of zeros of f on the circle $\{z \in \mathbf{C}:|z|=\exp (s)\}$, counted with multiplicity. In particular, it is a nonnegative integer. Non-negativity implies that the piecewise-linear function $s \mapsto A(s, f)$ is actually convex.

For nonzero $g \in B_{[a, b]}$, the function $s \mapsto v_{s}(g)$ appearing in Theorem 6 can be regarded as an analogue of the function $s \mapsto A(s, f)$ in the setting of p-adic geometry. More accurately, it is an analogue of the concave function $s \mapsto-A(-s, f)$, where the sign is a matter of convention.

Example 5 (Jensen's Formula). Let f be a holomorphic function defined on the open disk $\{z \in \mathbf{C}:|z|<b\}$, and assume for simplicity that $f(0) \neq 0$. For $t>0$, set $h(t)=A(\log (t), f)$. Then, for sufficiently small t, the function $h(t)$ takes the constant value $\log |f(0)|$. We therefore have

$$
h(t)=\log |f(0)|+\int_{0}^{t} h^{\prime}(r) d r=\log |f(0)|+\int_{0}^{t} \frac{A^{\prime}(\log (r), f)}{r} d r .
$$

Here $A^{\prime}(\log (r), f)$ is a well-defined integer provided that f does not have any zeroes on the circle $\{z \in \mathbf{C}$: $|z|=r\}$, given by the number $N(r, f)$ of zeroes of f on the disk $\{z \in \mathbf{C}:|z|<r\}$ (counted with multiplicity). We may rewrite the preceding equality as

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log |f(t \exp (i \theta))|=\log |f(0)|+\int_{0}^{t} \frac{N(r, f)}{r} d r
$$

which is an identity known as Jensen's formula.
Let us now return to the case of interest to us. Fix a perfectoid field C^{b} of characteristic p and real numbers $0<a \leq b<1$, and set $\alpha=-\log (a), \beta=-\log (b)$. Recall that, to every nonzero element $f \in B_{[a, b]}$, we can associate a convex piecewise linear function

$$
v_{\bullet}(f):[\beta, \alpha] \rightarrow \mathbf{R} \quad s \mapsto v_{s}(f)=-\log |f|_{\exp (-s)} .
$$

Heuristically, one can think of the function $s \mapsto v_{\bullet}(f)$ as a p-adic analogue of the function $s \mapsto-A(-s, f)$ constructed above (here the insertion of signs is really just a matter of convention). We saw in the previous lecture that this function is piecewise linear with integer slopes, and that it is concave. Even better, $v_{\bullet}(f)$ can be promoted to a germ of a piecewise linear function on a neighborhood of the interval $[\beta, \alpha]$: in other words, it has well-defined left and right derivatives

$$
\partial_{-} v_{\beta}(f) \quad \partial_{+} v_{\alpha}(f)
$$

these are integers, given by $\partial_{-} v_{\beta}\left(f^{\prime}\right)$ and $\partial_{+} v_{\alpha}\left(f^{\prime}\right)$ where $f^{\prime} \in \mathbf{A}_{\inf }\left[\frac{1}{p}, \frac{1}{[\pi]}\right]$ is any sufficiently close approximation to f with respect to the Gauss norms $|\bullet|_{a}$ and $|\bullet|_{b}$. In this case, the function $s \mapsto v_{s}\left(f^{\prime}\right)$ is defined for all $s \in \mathbf{R}_{>0}$ (and is piecewise linear with integer slopes), so the difference

$$
\partial_{-} v_{\beta}(f)-\partial_{+} v_{\alpha}(f)=\partial_{-} v_{\beta}\left(f^{\prime}\right)-\partial_{+} v_{\alpha}\left(f^{\prime}\right) \geq 0
$$

is a nonnegative integer. Our goal is to show that, like in the complex-analytic world, this integer has a concrete interpretation: when C^{b} is algebraically closed, it is equal to the degree of the divisor $\operatorname{Div}_{[a, b]}(f)$ (that is, the number of points of $y \in Y_{[a, b]}$ where the function f vanishes, each counted with multiplicity $\left.\operatorname{ord}_{y}(f)\right)$. In the last lecture, we reduced the proof of this to the following assertion:

Theorem 6. Let f be a nonzero element of $B_{[a, b]}$. Then:
(1) If $\partial_{-} v_{\beta}(f)=\partial_{+} v_{\alpha}(f)$, then f is invertible in $B_{[a, b]}$.
(2) If C^{b} is algebraically closed and $\partial_{-} v_{\beta}(f) \neq \partial_{+} v_{\alpha}(f)$, then there is a point $y \in Y_{[a, b]}$ such that $f(y)=0$.

Remark 7. We saw in the previous lecture that the converse of (1) and (2) hold.
Warning 8. Let f be as in Theorem 6. If $\partial_{-} v_{\beta}(f)=\partial_{+} v_{\alpha}(f)$, then the function $s \mapsto v_{s}(f)$ is linear on the interval $[\beta, \alpha]$. However, the converse is false in general. Note that if $a<b$, then the concavity of $v_{\bullet}(f)$ yields inequalities

$$
\partial_{-} v_{\beta}(f) \geq \partial_{+} v_{\beta}(f) \geq \partial_{-} v_{\alpha}(f) \geq \partial_{+} v_{\alpha}(f)
$$

and that $v_{\bullet}(f)$ is linear on the interval $[\beta, \alpha]$ if and only if we have an equality $\partial_{+} v_{\beta}(f) \geq \partial_{-} v_{\alpha}(f)$. In the case where C^{b} is algebraically closed, this is equivalent to the requirement that f does not vanish at any point of

$$
Y_{(a, b)}=\left\{y=(K, \iota) \in Y: a<|p|_{K}<b\right\} .
$$

However, it is possible for f to satisfy this condition while vanishing at points $y=(K, \iota)$ satisfying $|p|_{K}=a$ or $|p|_{K}=b$, in which case one of the inequalities

$$
\partial_{-} v_{\beta}(f) \geq \partial_{+} v_{\beta}(f) \quad \partial_{-} v_{\alpha}(f) \geq \partial_{+} v_{\alpha}(f)
$$

would be strict and f would not be invertible.
Let us now prove part (1) of Theorem 6 (we will prove (2) in a future lecture). Assume first that f belongs to the ring $\mathbf{A}_{\inf }\left[\frac{1}{p}, \frac{1}{[\pi]}\right]$, and therefore admits a unique Teichmüller expansion

$$
f=\sum_{n \gg-\infty}\left[c_{n}\right] p^{n}
$$

where the real numbers $\left|c_{n}\right|_{C^{b}}$ are bounded. In this case, the function $s \mapsto v_{s}(f)$ is defined for all $s>0$, and given by the formula

$$
v_{s}(f)=\inf _{n \in \mathbf{Z}}\left(v\left(c_{n}\right)+n s\right)
$$

The equality $\partial_{-} v_{\beta}(f)=\partial_{+} v_{\alpha}(f)$ is equivalent to the requirement that the function $s \mapsto v_{s}(f)$ is linear in a small neighborhood of the interval $[\beta, \alpha]$, and therefore coincides with the linear function

$$
s \mapsto v\left(c_{n_{0}} s\right)+n_{0} s=v_{s}\left(\left[c_{n_{0}}\right] p^{n_{0}}\right)
$$

on that neighborhood; it follows that we have

$$
v\left(c_{n}\right)+n s>v\left(c_{n_{0}}\right)+n_{0} s
$$

for $n_{0} \neq n$ and $s \in[\beta, \alpha]$. Restated in terms of absolute values, we have

$$
\left|c_{n_{0}}\right|_{C^{b}} \rho^{n_{0}}>\left|c_{n}\right|_{C^{b}} \rho^{n}
$$

for all $n \neq n_{0}$ and $\rho \in[a, b]$.
We wish to show that in this case, the function f is invertible. Replacing f by the quotient $\frac{f}{\left.\left[c_{n_{0}}\right] p^{n_{0}}\right]}$, we can reduce to the case where $n_{0}=0$ and $\left[c_{n_{0}}\right]=1$, so that our inequality can be rewritten as

$$
1>\left|c_{n}\right|_{C^{\triangleright}} \rho^{n}
$$

for $n \neq 0$ and $\rho \in[a, b]$. Setting $\epsilon=\sum_{n \neq 0}\left[c_{n}\right] p^{n}$, we have $|\epsilon|_{\rho}=\sup \left\{\left|c_{n}\right| \rho^{n}\right\}_{n \neq 0}<1$. It follows that ϵ is topologically nilpotent in the ring $B_{[a, b]}$, so that $f=1+\epsilon$ has an inverse given by the convergent sum

$$
f^{-1}=(1+\epsilon)^{-1}=1-\epsilon+\epsilon^{2}-\epsilon^{3}+\cdots
$$

This completes the proof of part (1) in the special case where f belongs to $\mathbf{A}_{\mathrm{inf}}\left[\frac{1}{p}, \frac{1}{[\pi]}\right]$.
We now treat the general case. Let f be a nonzero element of $B_{[a, b]}$, which we write as the limit of a sequence

$$
f_{1}, f_{2}, f_{3}, \cdots \in \mathbf{A}_{\mathrm{inf}}\left[\frac{1}{p}, \frac{1}{[\pi]}\right]
$$

which is Cauchy for the Gauss norms $|\bullet|_{\rho}$ for $\rho \in[a, b]$. We proved in Lecture 11 that we have

$$
\partial_{-} v_{\beta}(f)=\partial_{-} v_{\beta}\left(f_{n}\right) \quad \partial_{+} v_{\alpha}(f)=\partial_{+} v_{\alpha}\left(f_{n}\right)
$$

for $n \gg 0$. Passing to a subsequence, we may assume that these equalities hold for all n. In this case, our hypothesis $\partial_{-} v_{\beta}(f)=\partial_{+} v_{\alpha}(f)$ guarantees that we also ahve $\partial_{-} v_{\beta}\left(f_{n}\right)=\partial_{+} v_{\alpha}\left(f_{n}\right)$ for each n. By the special case treated above, this means that each f_{n} is invertible when regarded as an element of the completion $B_{[a, b]}$. Let us denote the inverse by f_{n}^{-1}. For each $\rho \in[a, b]$, we have

$$
\left|f_{m}^{-1}-f_{n}^{-1}\right|_{\rho}=\left|\frac{f_{n}-f_{m}}{f_{m} \cdot f_{n}}\right|_{\rho}=\frac{\left|f_{n}-f_{m}\right|_{\rho}}{\left|f_{m}\right|_{\rho} \cdot\left|f_{n}\right|_{\rho}}
$$

As m and n tend to infinity, the numerator of this expression goes to zero (since the sequence $\left\{f_{n}\right\}$ is Cauchy with respect to the Gauss norm $|\bullet|_{\rho}$) and the denominator tends to $|f|_{\rho}^{2}$. It follows that the quantity $\left|f_{m}^{-1}-f_{n}^{-1}\right|_{\rho}$ tends to zero. That is, $\left\{f_{n}^{-1}\right\}$ is a Cauchy sequence with respect to each of the Gauss norms $|\bullet|_{\rho}$ for $\rho \in[a, b]$, and therefore converges to an element $g \in B_{[a, b]}$. It follows by continuity that $f \cdot g=1$, so that f is invertible as desired.

