
Lecture 13: Digression-Jensen’s Formula

October 31, 2018

The constructions of the previous lecture(s) have an analogue in complex analysis.Let a and b be positive
real numbers, and let f be a holomorphic function defined on the annulus {z ∈ C : a < |z| < b} which is not
identically zero. Define a function

A(•, f) : (log(a), log(b))→ R A(s, f) =
1

2π

∫ 2π

0

log |f(exp(s+ iθ))|dθ.

In other words, A(s, f) is the average value of | log f(z)| on the circle {z ∈ C : |z| = exp(s)} of radius exp(s).

Exercise 1. Show that the average A(s, f) is well-defined even when f vanishes at some points of the circle
{z ∈ C : |z| = exp(s)}: that is, the function θ 7→ log f(exp(s+ iθ)) is always integrable, even when it fails to
be well-defined at finitely many points. Moreover, if the holomorphic function f is fixed, then s 7→ A(s, f)
is continuous.

Example 2. Let f be the holomorphic function given by f(z) = z. Then we have

A(s, f) =
1

2π

∫ 2π

0

log | exp(s+ iθ)|dθ 1

2π

∫ 2π

0

log(exp(s))dθ = s.

Example 3. Suppose that f(z) = exp(g(z)), for some holomorphic function g on the annulus {z ∈ C : a <
|z| < b}. We then have

A(s, f) =
1

2π

∫ 2π

0

Re(g(exp(s+ iθ)))dθ = Re(g(exp(s))),

where g is the radially symmetric holomorphic function given by

g(z) =
1

2π

∫ 2π

0

g(exp(iθ)z)dθ.

Note that g is a holomorphic function which is constant on each circle {z ∈ C : |z| = exp(s)} and is therefore
constant. It follows that the function s 7→ A(s, f) is constant on the interval (log(a), log(b)).

Example 4. Suppose that the holomorphic function f(z) has no zeroes in the the annulus {z ∈ C : a <
|z| < b}. Then f determines a continuous map

{z ∈ C : a < |z| < b} → C \ {0}

which has a well-defined winding number N ∈ Z around the origin. This winding number vanishes if and
only if f can be written globally as the exponential of another holomorphic function g(z). We can always
arrange this by multiplying f by a suitable power of z: that is, we can write f(z) = zN exp(g(z)) for some
holomorphic function g on {z ∈ C : a < |z| < b}. In this case, we have

A(s, f) = A(s, zN ) +A(s, exp(g)) = Ns+ c

for some real constant c, by virtue of Examples 2 and 3.
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Let us now return to the case of a general holomorphic function f : {z ∈ C : a < |z| < b} → C. It
follows from Example 4 that the function s 7→ A(s, f) is piecewise linear with integer slopes: it is linear when
restricted to any interval I ⊆ (log(a), log(b)) whose interior does not contain any point of the form log |z|,
where z is a zero of f .

The function s 7→ A(s, f) fails to be linear exactly when s has the form log |z|, where z is a zero of f . It
follows from the above reasoning that the difference ∂+A(s, f)−∂−A(s, f) is given by the difference between
the winding numbers of the functions

θ 7→ f(exp(s+ ε+ iθ)) θ 7→ f(exp(s− ε+ iθ))

where ε is some small real number. This difference is equal to the number of zeros of f on the circle
{z ∈ C : |z| = exp(s)}, counted with multiplicity. In particular, it is a nonnegative integer. Non-negativity
implies that the piecewise-linear function s 7→ A(s, f) is actually convex.

For nonzero g ∈ B[a,b], the function s 7→ vs(g) appearing in Theorem 6 can be regarded as an analogue of
the function s 7→ A(s, f) in the setting of p-adic geometry. More accurately, it is an analogue of the concave
function s 7→ −A(−s, f), where the sign is a matter of convention.

Example 5 (Jensen’s Formula). Let f be a holomorphic function defined on the open disk {z ∈ C : |z| < b},
and assume for simplicity that f(0) 6= 0. For t > 0, set h(t) = A(log(t), f). Then, for sufficiently small t,
the function h(t) takes the constant value log |f(0)|. We therefore have

h(t) = log |f(0)|+
∫ t

0

h′(r)dr = log |f(0)|+
∫ t

0

A′(log(r), f)

r
dr.

Here A′(log(r), f) is a well-defined integer provided that f does not have any zeroes on the circle {z ∈ C :
|z| = r}, given by the number N(r, f) of zeroes of f on the disk {z ∈ C : |z| < r} (counted with multiplicity).
We may rewrite the preceding equality as

1

2π

∫ 2π

0

log |f(t exp(iθ))| = log |f(0)|+
∫ t

0

N(r, f)

r
dr,

which is an identity known as Jensen’s formula.

Let us now return to the case of interest to us. Fix a perfectoid field C[ of characteristic p and real
numbers 0 < a ≤ b < 1, and set α = − log(a), β = − log(b). Recall that, to every nonzero element f ∈ B[a,b],
we can associate a convex piecewise linear function

v•(f) : [β, α]→ R s 7→ vs(f) = − log |f |exp(−s).

Heuristically, one can think of the function s 7→ v•(f) as a p-adic analogue of the function s 7→ −A(−s, f)
constructed above (here the insertion of signs is really just a matter of convention). We saw in the previous
lecture that this function is piecewise linear with integer slopes, and that it is concave. Even better, v•(f)
can be promoted to a germ of a piecewise linear function on a neighborhood of the interval [β, α]: in other
words, it has well-defined left and right derivatives

∂−vβ(f) ∂+vα(f),

these are integers, given by ∂−vβ(f ′) and ∂+vα(f ′) where f ′ ∈ Ainf [
1
p ,

1
[π] ] is any sufficiently close approxi-

mation to f with respect to the Gauss norms | • |a and | • |b. In this case, the function s 7→ vs(f
′) is defined

for all s ∈ R>0 (and is piecewise linear with integer slopes), so the difference

∂−vβ(f)− ∂+vα(f) = ∂−vβ(f ′)− ∂+vα(f ′) ≥ 0

is a nonnegative integer. Our goal is to show that, like in the complex-analytic world, this integer has a
concrete interpretation: when C[ is algebraically closed, it is equal to the degree of the divisor Div[a,b](f)
(that is, the number of points of y ∈ Y[a,b] where the function f vanishes, each counted with multiplicity
ordy(f)). In the last lecture, we reduced the proof of this to the following assertion:
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Theorem 6. Let f be a nonzero element of B[a,b]. Then:

(1) If ∂−vβ(f) = ∂+vα(f), then f is invertible in B[a,b].

(2) If C[ is algebraically closed and ∂−vβ(f) 6= ∂+vα(f), then there is a point y ∈ Y[a,b] such that f(y) = 0.

Remark 7. We saw in the previous lecture that the converse of (1) and (2) hold.

Warning 8. Let f be as in Theorem 6. If ∂−vβ(f) = ∂+vα(f), then the function s 7→ vs(f) is linear on
the interval [β, α]. However, the converse is false in general. Note that if a < b, then the concavity of v•(f)
yields inequalities

∂−vβ(f) ≥ ∂+vβ(f) ≥ ∂−vα(f) ≥ ∂+vα(f),

and that v•(f) is linear on the interval [β, α] if and only if we have an equality ∂+vβ(f) ≥ ∂−vα(f). In the
case where C[ is algebraically closed, this is equivalent to the requirement that f does not vanish at any
point of

Y(a,b) = {y = (K, ι) ∈ Y : a < |p|K < b}.

However, it is possible for f to satisfy this condition while vanishing at points y = (K, ι) satisfying |p|K = a
or |p|K = b, in which case one of the inequalities

∂−vβ(f) ≥ ∂+vβ(f) ∂−vα(f) ≥ ∂+vα(f)

would be strict and f would not be invertible.

Let us now prove part (1) of Theorem 6 (we will prove (2) in a future lecture). Assume first that f
belongs to the ring Ainf [

1
p ,

1
[π] ], and therefore admits a unique Teichmüller expansion

f =
∑

n�−∞
[cn]pn

where the real numbers |cn|C[ are bounded. In this case, the function s 7→ vs(f) is defined for all s > 0, and
given by the formula

vs(f) = inf
n∈Z

(v(cn) + ns).

The equality ∂−vβ(f) = ∂+vα(f) is equivalent to the requirement that the function s 7→ vs(f) is linear in a
small neighborhood of the interval [β, α], and therefore coincides with the linear function

s 7→ v(cn0
s) + n0s = vs([cn0

]pn0)

on that neighborhood; it follows that we have

v(cn) + ns > v(cn0) + n0s

for n0 6= n and s ∈ [β, α]. Restated in terms of absolute values, we have

|cn0
|C[ρn0 > |cn|C[ρn

for all n 6= n0 and ρ ∈ [a, b].

We wish to show that in this case, the function f is invertible. Replacing f by the quotient f
[cn0

]pn0 ] , we

can reduce to the case where n0 = 0 and [cn0
] = 1, so that our inequality can be rewritten as

1 > |cn|C[ρn
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for n 6= 0 and ρ ∈ [a, b]. Setting ε =
∑
n 6=0[cn]pn, we have |ε|ρ = sup{|cn|ρn}n 6=0 < 1. It follows that ε is

topologically nilpotent in the ring B[a,b], so that f = 1 + ε has an inverse given by the convergent sum

f−1 = (1 + ε)−1 = 1− ε+ ε2 − ε3 + · · · .

This completes the proof of part (1) in the special case where f belongs to Ainf [
1
p ,

1
[π] ].

We now treat the general case. Let f be a nonzero element of B[a,b], which we write as the limit of a
sequence

f1, f2, f3, · · · ∈ Ainf [
1

p
,

1

[π]
]

which is Cauchy for the Gauss norms | • |ρ for ρ ∈ [a, b]. We proved in Lecture 11 that we have

∂−vβ(f) = ∂−vβ(fn) ∂+vα(f) = ∂+vα(fn)

for n � 0. Passing to a subsequence, we may assume that these equalities hold for all n. In this case, our
hypothesis ∂−vβ(f) = ∂+vα(f) guarantees that we also ahve ∂−vβ(fn) = ∂+vα(fn) for each n. By the special
case treated above, this means that each fn is invertible when regarded as an element of the completion
B[a,b]. Let us denote the inverse by f−1n . For each ρ ∈ [a, b], we have

|f−1m − f−1n |ρ = |fn − fm
fm · fn

|ρ =
|fn − fm|ρ
|fm|ρ · |fn|ρ

.

As m and n tend to infinity, the numerator of this expression goes to zero (since the sequence {fn} is Cauchy
with respect to the Gauss norm | • |ρ) and the denominator tends to |f |2ρ. It follows that the quantity
|f−1m − f−1n |ρ tends to zero. That is, {f−1n } is a Cauchy sequence with respect to each of the Gauss norms
| • |ρ for ρ ∈ [a, b], and therefore converges to an element g ∈ B[a,b]. It follows by continuity that f · g = 1,
so that f is invertible as desired.
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