Lecture 13: Digression-Jensen’s Formula

October 31, 2018

The constructions of the previous lecture(s) have an analogue in complex analysis.Let a and b be positive
real numbers, and let f be a holomorphic function defined on the annulus {z € C: a < |z| < b} which is not
identically zero. Define a function

A(e, f) : (log(a),log(b)) = R A(s, f) = %/0 7Tlog |f(exp(s +40))|db.

In other words, A(s, f) is the average value of |log f(z)| on the circle {z € C : |z| = exp(s)} of radius exp(s).

Exercise 1. Show that the average A(s, f) is well-defined even when f vanishes at some points of the circle
{z € C: |z| = exp(s)}: that is, the function 6 — log f(exp(s+1i8)) is always integrable, even when it fails to
be well-defined at finitely many points. Moreover, if the holomorphic function f is fixed, then s — A(s, f)
is continuous.

Example 2. Let f be the holomorphic function given by f(z) = z. Then we have
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A(s, f) = %/0 log | exp(s + i9)|dﬁﬂ/0 log(exp(s))df = s.

Example 3. Suppose that f(z) = exp(g(z)), for some holomorphic function g on the annulus {z € C: a <
|z] < b}. We then have
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Als.f) = 5= [ Relg(exp(s + 16)))d8 = Re(g(exp(s)),
0
where g is the radially symmetric holomorphic function given by
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9(2) /0 g(exp(if)z)do.

Note that g is a holomorphic function which is constant on each circle {z € C : |z| = exp(s)} and is therefore
constant. It follows that the function s — A(s, f) is constant on the interval (log(a),log(d)).

Example 4. Suppose that the holomorphic function f(z) has no zeroes in the the annulus {z € C : a <
|z| < b}. Then f determines a continuous map

{zeC:a<|z| <b} - C\{0}

which has a well-defined winding number N € Z around the origin. This winding number vanishes if and
only if f can be written globally as the exponential of another holomorphic function g(z). We can always
arrange this by multiplying f by a suitable power of z: that is, we can write f(z) = 2~ exp(g(z)) for some
holomorphic function g on {z € C: a < |z| < b}. In this case, we have

A(s, f) = A(s, 2V) 4+ A(s,exp(g)) = Ns + ¢

for some real constant ¢, by virtue of Examples 2 and 3.



Let us now return to the case of a general holomorphic function f : {z € C:a < |z| < b} - C. It
follows from Example 4 that the function s — A(s, f) is piecewise linear with integer slopes: it is linear when
restricted to any interval I C (log(a),log(b)) whose interior does not contain any point of the form log |z,
where z is a zero of f.

The function s — A(s, f) fails to be linear exactly when s has the form log |z|, where z is a zero of f. It
follows from the above reasoning that the difference 0+ A(s, f) —0_ A(s, f) is given by the difference between
the winding numbers of the functions

0 — f(exp(s+ e+ b)) 0 — f(exp(s — e+ b))

where € is some small real number. This difference is equal to the number of zeros of f on the circle
{z € C: |z| = exp(s)}, counted with multiplicity. In particular, it is a nonnegative integer. Non-negativity
implies that the piecewise-linear function s — A(s, f) is actually convex.

For nonzero g € Bj, ), the function s > vs(g) appearing in Theorem 6 can be regarded as an analogue of
the function s — A(s, f) in the setting of p-adic geometry. More accurately, it is an analogue of the concave
function s — —A(—s, f), where the sign is a matter of convention.

Example 5 (Jensen’s Formula). Let f be a holomorphic function defined on the open disk {z € C : |z| < b},

and assume for simplicity that f(0) # 0. For ¢ > 0, set h(t) = A(log(t), f). Then, for sufficiently small ¢,

the function h(t) takes the constant value log|f(0)|. We therefore have

b A'(log(r), f)
T

t

h(t) = log | £(0)] + / W (r)dr = log | £(0)] + /

Here A’(log(r), f) is a well-defined integer provided that f does not have any zeroes on the circle {z € C :
|z| = r}, given by the number N (r, f) of zeroes of f on the disk {z € C : |z| < 7} (counted with multiplicity).
We may rewrite the preceding equality as

dr.

N(r, f)

r

2 ,
%/0 log | f(texp(i0))| = log | f(0)| _|_/0 dr,

which is an identity known as Jensen’s formula.

Let us now return to the case of interest to us. Fix a perfectoid field C® of characteristic p and real
numbers 0 < a < b < 1, and set a = —log(a), 8 = —log(b). Recall that, to every nonzero element f € Bj, ),
we can associate a convex piecewise linear function

U'(f): [5,&]—)R SHUs(f):_log‘f|exp(—s)‘

Heuristically, one can think of the function s +— ve(f) as a p-adic analogue of the function s — —A(—s, f)
constructed above (here the insertion of signs is really just a matter of convention). We saw in the previous
lecture that this function is piecewise linear with integer slopes, and that it is concave. Even better, ve(f)
can be promoted to a germ of a piecewise linear function on a neighborhood of the interval [5, «]: in other
words, it has well-defined left and right derivatives

d-vs(f)  dyvalf),

these are integers, given by d_vg(f’) and Oyv,(f') where f € AL,

p’ [n]
mation to f with respect to the Gauss norms | e |, and | e |,. In this case, the function s — v, (f’) is defined
for all s € Rsq (and is piecewise linear with integer slopes), so the difference

0_v5(f) — Dsvalf) = D_va(f') — Dyva(f') 2 0

is a nonnegative integer. Our goal is to show that, like in the complex-analytic world, this integer has a
concrete interpretation: when C” is algebraically closed, it is equal to the degree of the divisor Divia(f)
(that is, the number of points of y € Y[, where the function f vanishes, each counted with multiplicity
ordy(f)). In the last lecture, we reduced the proof of this to the following assertion:

| is any sufficiently close approxi-



Theorem 6. Let f be a nonzero element of Bjq ). Then:

(1) If 0_v(f) = Oyvalf), then f is invertible in B,y
(2) If C” is algebraically closed and O_vs(f) # O4+va(f), then there is a point y € Yia,5 such that f(y) = 0.
Remark 7. We saw in the previous lecture that the converse of (1) and (2) hold.

Warning 8. Let f be as in Theorem 6. If 0_vg(f) = 04va(f), then the function s — vs(f) is linear on
the interval [5, a]. However, the converse is false in general. Note that if a < b, then the concavity of ve(f)
yields inequalities

d_vp(f) > 0vp(f) = 0_valf) > drvalf),

and that ve(f) is linear on the interval [3, o] if and only if we have an equality dyvg(f) > 0_va(f). In the
case where C” is algebraically closed, this is equivalent to the requirement that f does not vanish at any
point of

Yap ={y=(K,1) €Y :a < |p|x <b}.

However, it is possible for f to satisfy this condition while vanishing at points y = (K, ¢) satisfying |p|x = a
or |p|k = b, in which case one of the inequalities

O-va(f) = O4vp(f)  O-valf) = O1valf)

would be strict and f would not be invertible.

Let us now prove part (1) of Theorem 6 (we will prove (2) in a future lecture). Assume first that f

belongs to the ring Aiu¢[L, 2], and therefore admits a unique Teichmiiller expansion

p’ [n]
f= Z [cn]pn
n>—oo

where the real numbers |c,|-» are bounded. In this case, the function s — vs(f) is defined for all s > 0, and
given by the formula
0a(f) = inf (v(en) + ms).

The equality 0_vg(f) = 0+va(f) is equivalent to the requirement that the function s — vs(f) is linear in a
small neighborhood of the interval [3, @], and therefore coincides with the linear function

s v(Cnys) + 1os = vs([cng [p™)
on that neighborhood; it follows that we have
v(en) +ns > v(cn,) + nos
for ng #n and s € [3,a]. Restated in terms of absolute values, we have
|Cnolce p™ > |enlcrp™

for all n # ng and p € [a, b].

We wish to show that in this case, the function f is invertible. Replacing f by the quotient [ we

f
Cno]pno] ’
can reduce to the case where ng = 0 and [c,,] = 1, so that our inequality can be rewritten as

1> |epleop™



for n # 0 and p € [a,b]. Setting € = >_, [cnlp", we have [e|, = sup{|c,[p" }nzo < 1. It follows that € is
topologically nilpotent in the ring B, j, so that f =1+ € has an inverse given by the convergent sum

=+ t=1—et+ -+
This completes the proof of part (1) in the special case where f belongs to Ainf[%7 ﬁ}
We now treat the general case. Let f be a nonzero element of B, 3, which we write as the limit of a
sequence
1 1 }
p’ [x]

which is Cauchy for the Gauss norms | e |, for p € [a,b]. We proved in Lecture 11 that we have

O-vp(f) = 0-vs(fn)  O1valf) = O1valfn)

for n > 0. Passing to a subsequence, we may assume that these equalities hold for all n. In this case, our
hypothesis 0_vg(f) = 01v4(f) guarantees that we also ahve d_vg(f,) = 04v4(fy) for each n. By the special
case treated above, this means that each f,, is invertible when regarded as an element of the completion
Biap)- Let us denote the inverse by fL. For each p € [a, b], we have

fn_fm| _ |fn_fm|ﬂ
fm'fn P ‘fm|p'|fn|p.

As m and n tend to infinity, the numerator of this expression goes to zero (since the sequence { f,,} is Cauchy
with respect to the Gauss norm | e |,) and the denominator tends to |f |,2) It follows that the quantity
|fnd = fitl, tends to zero. That is, {f, '} is a Cauchy sequence with respect to each of the Gauss norms
| ® |, for p € [a,b], and therefore converges to an element g € By, ;). It follows by continuity that f-g =1,
so that f is invertible as desired.
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