
Lecture 12: Detection of Zeroes

October 29, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C[ of characteristic p. Then every
untilt K of C[ is algebraically closed, so the map ] : C[ → K is surjective (we will prove this later).

Notation 1. We let Y denote the set of isomorphism classes of untilts (K, ι) of C[. We will use the letter
y to denote a typical point of Y . For 0 < a ≤ b < 1, we let Y[a,b] denote the subset of Y consisting of those
points y = (K, ι) satisfying a ≤ |p|K ≤ b.

We use letters like f and g to denote typical elements of the ring B[a,b]. For y ∈ Y[a,b], we let f(y) denote
the image of f under the ring homomorphism B[a,b] → K constructed in Lecture 5. We also let ordy(f)
denote the order of vanishing of f at the point y (so that ordy(f) > 0 if and only if f(y) = 0).

Our goal, over the next few lectures, is to prove the following result which was promised in Lecture 10:

Theorem 2. Let f be a nonzero element of B[a,b]. Then:

(1) The divisor Div[a,b](f) =
∑
y∈B[a,b]

ordy(f) · y is finite. In other words, the order of vanishing ordy(f)

is finite for all points y ∈ B[a,b], and vanishes for all but finitely many points of B[a,b].

(2) Let g be another element of B[a,b]. If Div[a,b](g) ≥ Div[a,b](f) (that is, if ordy(g) ≥ ordy(f) for all
y ∈ B[a,b]), then g is (uniquely) divisible by f .

Let us first dispense with the uniqueness.

Proposition 3. The ring B[a,b] is an integral domain.

Proof. Set α = − log(a) and β = − log(b). For each f ∈ B[a,b], we have a function

[β, α]→ R∪{∞} s 7→ vs(f) = − log |f |exp(−s).

We saw in the previous lecture that if f is not zero, then v•(f) is a piecewise linear concave function on the
interval [β, α] (with integer slopes): in particular, it is everywhere finite. If g is also nonzero, then v•(g)
is also a piecewise linear concave function. It follows that the function vs(fg) = vs(f) + vs(g) < ∞ for all
s ∈ [β, α], so that fg is nonzero in B[a,b].

We now consider a special case of Theorem 2, where f = ξ is a distinguished element of the ring Ainf . In
this case, assertion (1) is clear and (2) reduces to the following:

Proposition 4. Let ξ be a distinguished element of Ainf which vanishes at a point y ∈ Y[a,b]. If g ∈ B[a,b]

also vanishes at y, then g is divisible by ξ (uniquely, by virtue of Proposition 3).

Proof. Suppose first that g belongs to the ring Ainf [
1
p ,

1
[π] ]. Then we can write g = g0

pm[π]n for some g0 ∈ Ainf

and some m,n ≥ 0. Since g(y) = 0, it follows that g0(y) = 0: that is, g0 belongs to the kernel of the map
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θ : Ainf → OK determined by the untilt y = (K, ι). We saw in Lecture 3 that this kernel is generated by
the distinguished element ξ. We can therefore write g0 = ξ · h0 for some h0 ∈ Ainf . It follows that g = ξ · h,
where h = h0

pm[π]n .

We now treat the general case. Let g be any element of B[a,b]. Then we can write g as the limit of a

sequence g1, g2, g3, . . . ∈ Ainf [
1
p ,

1
[π] ]. It follows that g(y) is the limit of the sequence {gi(y)} in the field K

corresponding to the point y = (K, ι) ∈ Y[a,b]. For each i > 0, write gi(y) = c]i for some element ci ∈ C[. If

g(y) = 0, then the sequence {gi(y)} converges to zero in K. Since |gi(y)|K = |c]i |K = |ci|C[ , it follows that
the sequence {ci} converges to zero in C[, and therefore the sequence of Teichmüller representatives {[ci]}
converges to zero with respect to the Gauss norms | • |a and | • |b. It follows that the sequence {gi − [ci]}
also converges to g. Replacing each gi by gi − [ci], we can assume that each gi vanishes at the point y. By
the first part of the proof, we can write gi = ξ · hi, for some (uniquely determined) hi ∈ Ainf [

1
p ,

1
[π] ]. We will

complete the proof by showing that {hi} is a Cauchy sequence (for the Gauss norms | • |a and | • |b): then
it converges to a unique element h ∈ B[a,b] which satisfies g = ξ · h by continuity. To prove this, we observe
that

|gi − gj |a = |ξ · (hi − hj)|a = |ξ|a · |hi − hj |a
so that

|hi − hj |a =
|gi − gj |a
|ξ|a

→ 0

as i, j →∞ (and similarly for the Gauss norm | • |b).

Proposition 4 suggests a strategy for proving Theorem 2. Let f be a nonzero element of B[a,b], and let g
be another element satisfying Div[a,b](g) ≥ Div[a,b](f). Suppose that Div[a,b](f) is not zero: that is, there is
some point y1 ∈ Y[a,b] such that f(y1) = 0. Then we also have g(y1) = 0. Let ξ1 ∈ Ainf be a distinguished
element which vanishes at y1. Applying Proposition 4, we can write f = ξ1 · f1 and g = ξ1 · g1 for some
elements f1, g1 ∈ B[a,b]. Then we have Div[a,b](g1) ≥ Div[a,b](f1). We can then repeat the argument: if
Div[a,b](f1) 6= 0, we can find another distinguished element ξ2 vanishing at a point y2 ∈ Y[a,b] such that
f1 = ξ2 · f2 and g1 = ξ2 · g2. Continuing in this way, we obtain sequences {fn}, {gn}, and {ξn} satisfying

f = ξ1 · ξ2 · · · ξn · fn g = ξ1 · ξ2 · · · ξn · gn.

To prove Theorem 2, we must show the following:

(1′) This process eventually stops: that is, we eventually end up in a situation where Div[a,b](fn) = 0. In
this case, we have Div[a,b](f) = y1 + y2 + · · ·+ yn.

(2′) When the process stops, the element fn is a unit (and therefore automatically divides gn).

We can prove (1′) very easily from the results of the previous lecture. Let h be any nonzero element of the
ring B[a,b], and write h as the limit of a sequence {hi ∈ Ainf [

1
p ,

1
[π] ]} which converges for the Gauss norms |•|a

and | • |b. In the previous lecture, we proved that the sequence of functions {v•(hi)} is eventually constant
on the interval [β, α]. Moreover, we can do a little better: the sequence of left derivatives ∂−vβ(hi) and right
derivatives ∂+vα(hi) are eventually constant, converging to integers ∂−vβ(h) and ∂+vα(h), respectively.

Exercise 5. Check that the integers ∂−vβ(h) and ∂+vα(h) depend only on h, and not on the choice of
Cauchy sequence {hi} converging to h.

Since each of the functions v•(hi) is concave, we have ∂−vβ(hi) ≥ ∂+vα(hi) for each i, and therefore
∂−vβ(h) ≥ ∂+vβ(h).

Proposition 6. Let f be a nonzero element of B[a,b], and set N = ∂−vβ(f) − ∂+vα(f) ≥ 0. Then the
construction sketched above must terminative in ≤ N steps. That is, f cannot be divisible by a product
ξ1 · ξ2 · · · · · ξN+1 of distinguished elements ξi vanishing at points yi ∈ Y[a,b].
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Proof. We saw in the previous lecture that if ξ is a distinguished element of Ainf , then the function s 7→ vs(ξ)
is given by the formula

vs(ξ) =

{
s if s ≤ v(ξ)

v(ξ) otherwise.
.

In particular, if the point at which ξ vanishes belongs to Y[a,b], then v(ξ) belongs to the interval [β, α], and
therefore

∂−vβ(ξ) = 1 ∂+vα(ξ) = 0.

In particular, if we can write f = ξ1 · ξ2 · · · ξN+1 · fN+1, then we have

N = ∂−vβ(f)− ∂+vα(f)

= (

N+1∑
i=1

∂−vβ(ξi)− ∂+vα(ξi)) + (∂−vβ(fN+1)− ∂+vα(fN+1)

≥ (

N+1∑
i=1

∂−vβ(ξi)− ∂+vα(ξi))

= N + 1

which is a contradiction.

We will deduce Theorem 2 from the following:

Theorem 7. Let f be a nonzero element of B[a,b]. The following conditions are equivalent:

(a) The element f is invertible in B[a,b].

(b) The integer N = ∂−vβ(f)− ∂+vα(f) is equal to zero (in particular, the concave function s 7→ vs(f) is
linear on the interval [β, α]).

(c) The divisor Div[a,b](f) is equal to zero. That is, there is no point y ∈ Y[a,b] such that f(y) = 0.

Note that the implication (b) ⇒ (c) follows from Proposition 6. The implication (a) ⇒ (b) is also clear:
if f has an inverse f−1 ∈ B[a,b], then it is easy to see that

∂−vβ(f−1) = −∂−vβ(f) ∂+vα(f−1) = −∂+vα(f)

so that
N = ∂−vβ(f)− ∂+vα(f) = −(∂−vβ(f−1)− ∂+vα(f−1) ≤ 0.

Over the next few lectures, we will show (using different arguments) that both of the implications (a)⇒
(b) and (b) ⇒ (c) is reversible. Once that is done, it will follow that (c) ⇒ (a): that is, a nonzero element
f ∈ B[a,b] satisfying Div[a,b](f) = 0 is invertible. This will complete the proof of (2′) and with it the proof
of Theorem 2.
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