Lecture 12: Detection of Zeroes

October 29, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C^{b} of characteristic p. Then every untilt K of C^{b} is algebraically closed, so the map $\sharp: C^{b} \rightarrow K$ is surjective (we will prove this later).

Notation 1. We let Y denote the set of isomorphism classes of untilts (K, ι) of C^{b}. We will use the letter y to denote a typical point of Y. For $0<a \leq b<1$, we let $Y_{[a, b]}$ denote the subset of Y consisting of those points $y=(K, \iota)$ satisfying $a \leq|p|_{K} \leq b$.

We use letters like f and g to denote typical elements of the ring $B_{[a, b]}$. For $y \in Y_{[a, b]}$, we let $f(y)$ denote the image of f under the ring homomorphism $B_{[a, b]} \rightarrow K$ constructed in Lecture 5. We also let $\operatorname{ord}_{y}(f)$ denote the order of vanishing of f at the point y (so that $\operatorname{ord}_{y}(f)>0$ if and only if $f(y)=0$).

Our goal, over the next few lectures, is to prove the following result which was promised in Lecture 10:
Theorem 2. Let f be a nonzero element of $B_{[a, b]}$. Then:
(1) The divisor $\operatorname{Div}_{[a, b]}(f)=\sum_{y \in B_{[a, b]}} \operatorname{ord}_{y}(f) \cdot y$ is finite. In other words, the order of vanishing $\operatorname{ord}_{y}(f)$ is finite for all points $y \in B_{[a, b]}$, and vanishes for all but finitely many points of $B_{[a, b]}$.
(2) Let g be another element of $B_{[a, b]}$. If $\operatorname{Div}_{[a, b]}(g) \geq \operatorname{Div}_{[a, b]}(f)$ (that is, if $\operatorname{ord}_{y}(g) \geq \operatorname{ord}_{y}(f)$ for all $y \in B_{[a, b]}$), then g is (uniquely) divisible by f.

Let us first dispense with the uniqueness.
Proposition 3. The ring $B_{[a, b]}$ is an integral domain.
Proof. Set $\alpha=-\log (a)$ and $\beta=-\log (b)$. For each $f \in B_{[a, b]}$, we have a function

$$
[\beta, \alpha] \rightarrow \mathbf{R} \cup\{\infty\} \quad s \mapsto v_{s}(f)=-\log |f|_{\exp (-s)} .
$$

We saw in the previous lecture that if f is not zero, then $v_{\bullet}(f)$ is a piecewise linear concave function on the interval $[\beta, \alpha]$ (with integer slopes): in particular, it is everywhere finite. If g is also nonzero, then $v_{\bullet}(g)$ is also a piecewise linear concave function. It follows that the function $v_{s}(f g)=v_{s}(f)+v_{s}(g)<\infty$ for all $s \in[\beta, \alpha]$, so that $f g$ is nonzero in $B_{[a, b]}$.

We now consider a special case of Theorem 2, where $f=\xi$ is a distinguished element of the ring $\mathbf{A}_{\mathrm{inf}}$. In this case, assertion (1) is clear and (2) reduces to the following:

Proposition 4. Let ξ be a distinguished element of $\mathbf{A}_{\text {inf }}$ which vanishes at a point $y \in Y_{[a, b]}$. If $g \in B_{[a, b]}$ also vanishes at y, then g is divisible by ξ (uniquely, by virtue of Proposition 3).

Proof. Suppose first that g belongs to the ring $\mathbf{A}_{\text {inf }}\left[\frac{1}{p}, \frac{1}{[\pi]}\right]$. Then we can write $g=\frac{g_{0}}{p^{m}[\pi]^{n}}$ for some $g_{0} \in \mathbf{A}_{\text {inf }}$ and some $m, n \geq 0$. Since $g(y)=0$, it follows that $g_{0}(y)=0$: that is, g_{0} belongs to the kernel of the map
$\theta: \mathbf{A}_{\text {inf }} \rightarrow \mathcal{O}_{K}$ determined by the untilt $y=(K, \iota)$. We saw in Lecture 3 that this kernel is generated by the distinguished element ξ. We can therefore write $g_{0}=\xi \cdot h_{0}$ for some $h_{0} \in \mathbf{A}_{\text {inf }}$. It follows that $g=\xi \cdot h$, where $h=\frac{h_{0}}{p^{m}[\pi]^{n}}$.

We now treat the general case. Let g be any element of $B_{[a, b]}$. Then we can write g as the limit of a sequence $g_{1}, g_{2}, g_{3}, \ldots \in \mathbf{A}_{\inf }\left[\frac{1}{p}, \frac{1}{[\pi]}\right]$. It follows that $g(y)$ is the limit of the sequence $\left\{g_{i}(y)\right\}$ in the field K corresponding to the point $y=(K, \iota) \in Y_{[a, b]}$. For each $i>0$, write $g_{i}(y)=c_{i}^{\sharp}$ for some element $c_{i} \in C^{b}$. If $g(y)=0$, then the sequence $\left\{g_{i}(y)\right\}$ converges to zero in K. Since $\left|g_{i}(y)\right|_{K}=\left|c_{i}^{\sharp}\right|_{K}=\left|c_{i}\right|_{C^{b}}$, it follows that the sequence $\left\{c_{i}\right\}$ converges to zero in C_{b}, and therefore the sequence of Teichmüller representatives $\left\{\left[c_{i}\right]\right\}$ converges to zero with respect to the Gauss norms $|\bullet|_{a}$ and $|\bullet|_{b}$. It follows that the sequence $\left\{g_{i}-\left[c_{i}\right]\right\}$ also converges to g. Replacing each g_{i} by $g_{i}-\left[c_{i}\right]$, we can assume that each g_{i} vanishes at the point y. By the first part of the proof, we can write $g_{i}=\xi \cdot h_{i}$, for some (uniquely determined) $h_{i} \in \mathbf{A}_{\text {inf }}\left[\frac{1}{p}, \frac{1}{[\pi]}\right]$. We will complete the proof by showing that $\left\{h_{i}\right\}$ is a Cauchy sequence (for the Gauss norms $|\bullet|_{a}$ and $|\bullet|_{b}$): then it converges to a unique element $h \in B_{[a, b]}$ which satisfies $g=\xi \cdot h$ by continuity. To prove this, we observe that

$$
\left|g_{i}-g_{j}\right|_{a}=\left|\xi \cdot\left(h_{i}-h_{j}\right)\right|_{a}=|\xi|_{a} \cdot\left|h_{i}-h_{j}\right|_{a}
$$

so that

$$
\left|h_{i}-h_{j}\right|_{a}=\frac{\left|g_{i}-g_{j}\right|_{a}}{|\xi|_{a}} \rightarrow 0
$$

as $i, j \rightarrow \infty$ (and similarly for the Gauss norm $\left.|\bullet|_{b}\right)$.
Proposition 4 suggests a strategy for proving Theorem 2. Let f be a nonzero element of $B_{[a, b]}$, and let g be another element satisfying $\operatorname{Div}_{[a, b]}(g) \geq \operatorname{Div}_{[a, b]}(f)$. Suppose that $\operatorname{Div}_{[a, b]}(f)$ is not zero: that is, there is some point $y_{1} \in Y_{[a, b]}$ such that $f\left(y_{1}\right)=0$. Then we also have $g\left(y_{1}\right)=0$. Let $\xi_{1} \in \mathbf{A}_{\mathrm{inf}}$ be a distinguished element which vanishes at y_{1}. Applying Proposition 4, we can write $f=\xi_{1} \cdot f_{1}$ and $g=\xi_{1} \cdot g_{1}$ for some elements $f_{1}, g_{1} \in B_{[a, b]}$. Then we have $\operatorname{Div}_{[a, b]}\left(g_{1}\right) \geq \operatorname{Div}_{[a, b]}\left(f_{1}\right)$. We can then repeat the argument: if $\operatorname{Div}_{[a, b]}\left(f_{1}\right) \neq 0$, we can find another distinguished element ξ_{2} vanishing at a point $y_{2} \in Y_{[a, b]}$ such that $f_{1}=\xi_{2} \cdot f_{2}$ and $g_{1}=\xi_{2} \cdot g_{2}$. Continuing in this way, we obtain sequences $\left\{f_{n}\right\},\left\{g_{n}\right\}$, and $\left\{\xi_{n}\right\}$ satisfying

$$
f=\xi_{1} \cdot \xi_{2} \cdots \xi_{n} \cdot f_{n} \quad g=\xi_{1} \cdot \xi_{2} \cdots \xi_{n} \cdot g_{n}
$$

To prove Theorem 2, we must show the following:
$\left(1^{\prime}\right)$ This process eventually stops: that is, we eventually end up in a situation where $\operatorname{Div}_{[a, b]}\left(f_{n}\right)=0$. In this case, we have $\operatorname{Div}_{[a, b]}(f)=y_{1}+y_{2}+\cdots+y_{n}$.
$\left(2^{\prime}\right)$ When the process stops, the element f_{n} is a unit (and therefore automatically divides g_{n}).
We can prove (1^{\prime}) very easily from the results of the previous lecture. Let h be any nonzero element of the ring $B_{[a, b]}$, and write h as the limit of a sequence $\left\{h_{i} \in \mathbf{A}_{\inf }\left[\frac{1}{p}, \frac{1}{[\pi]}\right]\right\}$ which converges for the Gauss norms $|\bullet|_{a}$ and $|\bullet|_{b}$. In the previous lecture, we proved that the sequence of functions $\left\{v_{\bullet}\left(h_{i}\right)\right\}$ is eventually constant on the interval $[\beta, \alpha]$. Moreover, we can do a little better: the sequence of left derivatives $\partial_{-} v_{\beta}\left(h_{i}\right)$ and right derivatives $\partial_{+} v_{\alpha}\left(h_{i}\right)$ are eventually constant, converging to integers $\partial_{-} v_{\beta}(h)$ and $\partial_{+} v_{\alpha}(h)$, respectively.

Exercise 5. Check that the integers $\partial_{-} v_{\beta}(h)$ and $\partial_{+} v_{\alpha}(h)$ depend only on h, and not on the choice of Cauchy sequence $\left\{h_{i}\right\}$ converging to h.

Since each of the functions $v_{\bullet}\left(h_{i}\right)$ is concave, we have $\partial_{-} v_{\beta}\left(h_{i}\right) \geq \partial_{+} v_{\alpha}\left(h_{i}\right)$ for each i, and therefore $\partial_{-} v_{\beta}(h) \geq \partial_{+} v_{\beta}(h)$.
Proposition 6. Let f be a nonzero element of $B_{[a, b]}$, and set $N=\partial_{-} v_{\beta}(f)-\partial_{+} v_{\alpha}(f) \geq 0$. Then the construction sketched above must terminative in $\leq N$ steps. That is, f cannot be divisible by a product $\xi_{1} \cdot \xi_{2} \cdots \cdot \xi_{N+1}$ of distinguished elements ξ_{i} vanishing at points $y_{i} \in Y_{[a, b]}$.

Proof. We saw in the previous lecture that if ξ is a distinguished element of $\mathbf{A}_{\mathrm{inf}}$, then the function $s \mapsto v_{s}(\xi)$ is given by the formula

$$
v_{s}(\xi)= \begin{cases}s & \text { if } s \leq v(\xi) \\ v(\xi) & \text { otherwise }\end{cases}
$$

In particular, if the point at which ξ vanishes belongs to $Y_{[a, b]}$, then $v(\xi)$ belongs to the interval $[\beta, \alpha]$, and therefore

$$
\partial_{-} v_{\beta}(\xi)=1 \quad \partial_{+} v_{\alpha}(\xi)=0
$$

In particular, if we can write $f=\xi_{1} \cdot \xi_{2} \cdots \xi_{N+1} \cdot f_{N+1}$, then we have

$$
\begin{aligned}
N & =\partial_{-} v_{\beta}(f)-\partial_{+} v_{\alpha}(f) \\
& =\left(\sum_{i=1}^{N+1} \partial_{-} v_{\beta}\left(\xi_{i}\right)-\partial_{+} v_{\alpha}\left(\xi_{i}\right)\right)+\left(\partial_{-} v_{\beta}\left(f_{N+1}\right)-\partial_{+} v_{\alpha}\left(f_{N+1}\right)\right. \\
& \geq\left(\sum_{i=1}^{N+1} \partial_{-} v_{\beta}\left(\xi_{i}\right)-\partial_{+} v_{\alpha}\left(\xi_{i}\right)\right) \\
& =N+1
\end{aligned}
$$

which is a contradiction.
We will deduce Theorem 2 from the following:
Theorem 7. Let f be a nonzero element of $B_{[a, b]}$. The following conditions are equivalent:
(a) The element f is invertible in $B_{[a, b]}$.
(b) The integer $N=\partial_{-} v_{\beta}(f)-\partial_{+} v_{\alpha}(f)$ is equal to zero (in particular, the concave function $s \mapsto v_{s}(f)$ is linear on the interval $[\beta, \alpha]$).
(c) The divisor $\operatorname{Div}_{[a, b]}(f)$ is equal to zero. That is, there is no point $y \in Y_{[a, b]}$ such that $f(y)=0$.

Note that the implication $(b) \Rightarrow(c)$ follows from Proposition 6. The implication $(a) \Rightarrow(b)$ is also clear: if f has an inverse $f^{-1} \in B_{[a, b]}$, then it is easy to see that

$$
\partial_{-} v_{\beta}\left(f^{-1}\right)=-\partial_{-} v_{\beta}(f) \quad \partial_{+} v_{\alpha}\left(f^{-1}\right)=-\partial_{+} v_{\alpha}(f)
$$

so that

$$
N=\partial_{-} v_{\beta}(f)-\partial_{+} v_{\alpha}(f)=-\left(\partial_{-} v_{\beta}\left(f^{-1}\right)-\partial_{+} v_{\alpha}\left(f^{-1}\right) \leq 0\right.
$$

Over the next few lectures, we will show (using different arguments) that both of the implications $(a) \Rightarrow$ (b) and $(b) \Rightarrow(c)$ is reversible. Once that is done, it will follow that $(c) \Rightarrow(a)$: that is, a nonzero element $f \in B_{[a, b]}$ satisfying $\operatorname{Div}_{[a, b]}(f)=0$ is invertible. This will complete the proof of $\left(2^{\prime}\right)$ and with it the proof of Theorem 2.

