
Lecture 10: Structure of the Fargues-Fontaine Curve

October 29, 2018

Throughout this lecture, we fix an algebraically closed perfectoid field C[ of characteristic p, with valuation
ring O[C . Let Y denote the set of all isomorphism classes of characteristic zero untilts y = (K, ι) of C[. To
each nonzero element f of the ring B, we associate the “divisor”∑

y∈Y
ordy(f) · y

(which is generally an infinite sum, though “locally” finite). We recall three results from the previous lecture
(which we have not yet proved):

Theorem 1. (1) Every nonzero element f ∈ B, has finite order of vanishing ordy(f) at each point y ∈ Y .

(2) Another nonzero element g ∈ B is divisible by f if and only if Div(f) ≤ Div(g): that is, ordy(f) ≤
ordy(g) for each y ∈ Y .

Theorem 2. For n < 0, the eigenspace Bϕ=p
n

vanishes.

Theorem 3. Every untilt of C[ is algebraically closed.

Let us now collect some consequences.

Corollary 4. The ring Bϕ=1 is a field.

In fact, the field Bϕ=1 can be identified with Qp; we stated this without proof in the previous lecture,
but will not need it yet.

Proof of Corollary 4. Let f be a nonzero element of Bϕ=1; we wish to prove that f is invertible in B (in
which case it is clear that the inverse f−1 also belongs to Bϕ=1. By virtue of Theorem 1, it will suffice to show
that the divisor Div(f) vanishes. Since f is fixed by the Frobenius, the divisor Div(f) is likewise fixed by the
Frobenius. Consequently, if Div(f) 6= 0, then we can write Div(f) ≥

∑
n∈Z ϕ

n(y) for some y = (K, ι) ∈ Y .
It follows from Theorem 3 that K contains a copy of Qcyc

p , so that we can write
∑
n∈Z ϕ

n(y) = log([ε]) for

some ε ∈ 1 + m[C . Applying Theorem 1, we can write f = g · log([ε]). It follows that g ∈ Bϕ=p−1

= {0},
contradicting our assumption that f 6= 0.

Corollary 5. For n ≥ 0, every nonzero element f ∈ Bϕ=pn factors as a product λ log([ε1]) · · · log([εn]) for
some λ ∈ Bϕ=1 and ε1, . . . , εn ∈ 1 + mC[ . Moreover, the factors are uniquely determined up reordering and
multiplication by elements of Q×p .

Proof. We prove existence by induction on n. If n = 0, there is nothing to prove. we will therefore assume
that n > 0. Note that if Div(f) = 0, then f is invertible (Theorem 1) and the inverse f−1 belongs to Bϕ=p

−n

,
contradicting Theorem 2. As in the proof of Corollary 4, we learn that f is divisible by log([ε]) for some
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element ε 6= 1 of 1+m[C . Writing f = g · log([ε]), we conclude that g ∈ Bϕ=pn−1

. It follows from our inductive
hypothesis that we can write g = λ log([ε1]) · · · log([εn−1]) for some λ ∈ Bϕ=1 and ε1, . . . , εn ∈ 1 + mC[ , so
that f = λ log([ε1]) · · · log([εn−1]) · log([ε]).

To prove uniqueness, it will suffice to show for 1 6= ε ∈ 1 +m[C , the element log([ε]) is a prime element of
the graded ring

⊕
n≥0B

ϕ=pn : that is, if log([ε]) divides a product f ·g, then either log([ε]) divides f or log([ε])
divides g. Since log([ε]) is homogeneous, it suffices to check this in the case where f and g are homogeneous:
that is, we may assume that f ∈ Bϕ=pm and g ∈ Bϕ=pn . Choose a point y ∈ Y belonging to the vanishing
locus of log([ε]). Then either f or g must vanish at the point y; without loss of generality, we may assume
that f(y) = 0. The equation ϕ(f) = pmf guarantees that the divisor Div(f) is Frobenius-invariant, so we
must have Div(f) ≥

∑
n∈Z ϕ

n(y) = Div(log([ε])). Applying Theorem 1, we conclude that log([ε]) divides
f .

Let P denote the graded ring
⊕

n≥0B
ϕ=pn . Recall that the Fargues-Fontaine curve XFF is defined to

be the scheme Proj(P ). By definition, the points of XFF (as a topological space) can be identified with
homogeneous prime ideals p ⊆ P which do not contain the “irrelevant” ideal

⊕
n>1B

ϕ=pn . Let us give two
examples of such ideals:

• It follows from Theorem 1 that B is an integral domain. Consequently, the graded ring P is also an
integral domain, so the zero ideal (0) ⊆ P is prime. This prime ideal corresponds to the generic point
of the Fargues-Fontaine curve XFF.

• Let (K, ι) ∈ Y be a characteristic zero untilt of C[, and choose an element ε ∈ 1 + m[C such that ε 6= 1
and log([ε]) vanishes at K. It follows from the proof Corollary 5 that the principal ideal (log([ε]))
is prime, and therefore corresponds to a point of the Fargues-Fontaine curve that we will denote by
xK . Note that multiplying log([ε]) by a unit in Qp does not change the principal ideal (log([ε])).
Consequently, the point xK depends only on the untilt K. Moreover, we have xK = xK′ if and only if
K and K ′ belong to the same Frobenius orbit of Y .

We now show that these are the only points of the Fargues-Fontaine curve:

Proposition 6. Let x be a point of the Fargues-Fontaine curve XFF which is not the generic point. Then we
have x = xK for some point (K, ι) ∈ Y . Moreover, the residue field of XFF at the point x can be identified
with K.

Proof. By construction, the scheme XFF = Proj(P ) can be obtained by gluing together open affine sub-
schemes of the form P [ 1f ]0 = B[ 1f ]ϕ=1, where f is a nonzero homogeneous element of P having positive
degree. Let us suppose that x belongs to one of these open subschemes, and therefore corresponds to a
nonzero prime ideal p ⊆ B[ 1f ]ϕ=1. Choose an element of p and write it as a fraction g

fn for some element

g ∈ Bϕ=pn . It follows from Corollary 5 that, after scaling by a unit, we may assume that this element factors

as a product log([ε1])
f · · · log([εn])f . Since p is prime, we may assume that it contains one of the factors, which

we write as log([ε])
f . Let y = (K, ι) ∈ Y be a point at which log([ε]) vanishes. We claim that x = xK , or

equivalently that p is generated by log([ε])
f . To prove this (and the last claim of Proposition 6), it will suffice

to show that the principal ideal ( log([ε])
f ) is maximal, and that the quotient field

B[
1

f
]ϕ=1/(

log([ε])

f
)

can be identified with K. Since f does not vanish at K, we have a canonical ring homomorphism

ρ : B[
1

f
]ϕ=1 ⊆ B[

1

f
]→ K;
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we claim that ρ is a surjection whose kernel is generated by log([ε])
f

To prove surjectivity, we note that ρ is already surjective when restricted to 1
fB

ϕ=p, since every element

of K has the form log(y]) for some y ∈ 1 + m[C (see Lecture 9). To prove injectivity, we can use Corollary

5 to write every element of B[ 1f ]ϕ=1 as a product λ log([ε1])
f · · · log([εn])f . If this point belongs to ker(ρ), then

some fraction log([εi])
f must be annihilated by ρ. The desired result then follows from the observation that

log([εi])
f and log([ε])

f differ by multiplication by some nonzero element of Qp.

Corollary 7. The construction y = (K, ι) 7→ xK induces a bijection

Y/ϕZ ' {Closed points of XFF}

Corollary 8. The Fargues-Fontaine curve XFF is a Dedekind scheme.

Proof. By definition, we can cover XFF by open affine subschemes of the form R = B[ 1f ]ϕ=1. The proof of
Proposition 6 shows that every nonzero prime ideal of R is a maximal ideal generated by a single element.
In particular, every prime ideal of R is finitely generated so, by a theorem of Cohen, R is Noetherian. Since
every nonzero prime ideal in R is maximal, it has Krull dimension 1. Moreover, since every maximal ideal
of R is generated by a single element, the ring R is regular. It follows that R is a Dedekind ring, so that
XFF is a Dedekind scheme.
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