Math 155, Problem Set 8 (due November 7)

October 30, 2011
(1) Let A be a finite partially ordered set containing elements $a, b \in A$. Suppose there exists a third element $c \in A$ such that $a<c<b$ with the following property: for every $d \in A$, if $a \leq d \leq b$, then either $d \leq c$ or $d \geq c$. Prove that $\mu(a, b)=0$, where μ denotes the Möbius function of A.
(2) Let S be a finite set and let $\operatorname{Part}(S)$ denote the partially ordered set of equivalence relations on S. Give general formula for $\mu\left(E, E^{\prime}\right)$, where μ denotes the Möbius function of $\operatorname{Part}(S)$ (hint: reduce the problem to the special case treated in class).
(3) Let G be a finite group, and let $\left\{H_{1}, \ldots, H_{m}\right\}$ be a set of representatives for the conjugacy classes of subgroups of G. For $1 \leq i \leq j \leq m$, let $c_{i, j}$ denote the number of subgroups of G which contain H_{i} and are conjugate to H_{j}. Show that the matrix $\left[c_{i, j}\right]_{1 \leq i \leq j \leq n}$ has an inverse $\left[\mu_{i, j}\right]_{1 \leq i, j \leq m}$, where

$$
\mu_{i, j}=\sum_{K_{0} \subsetneq K_{1} \subsetneq K_{2} \subsetneq \ldots \subsetneq K_{n}}(-1)^{n} .
$$

Here the sum is taken over all chains of subgroups

$$
K_{0} \subsetneq K_{1} \subsetneq K_{2} \subsetneq \cdots \subsetneq K_{n}
$$

where $K_{0}=H_{i}$ and K_{n} is conjugate to H_{j}.

