Math 155, Problem Set 7 (due October 31)

October 22, 2011
(1) Let S be a set of size $2 m$. Show that the partially ordered set $P(S)=\{T: T \subseteq S\}$ has a unique antichain of size $\binom{2 m}{m}$.
(2) Let A be a partially ordered set, and let m and n be integers. Show that if A has more that $m n$ elements, then either A has a chain of size $m+1$ or an antichain of size $n+1$.
(3) Let A be a finite partially ordered set, and let $a, b \in A$ be elements. Show that the following conditions are equivalent:
(i) We have $a \leq b$ in A.
(ii) For every linear ordering \leq^{\prime} on A which refines \leq, we have $a \leq^{\prime} b$.

