Math 155, Problem Set 5 (due October 17)

October 10, 2011

- (1) Up to rotational symmetry, how many ways are there to color the faces of a regular dodecahedron using two colors?
- (2) Let S be the species of derangements (so that, for every finite set I, S[I] is the set of permutations of I without fixed points). Find a formula for the cycle index series $Z_S(s_1, s_2, \ldots)$.

Let G be a finite group. Recall that the Burnside ring Burn[G] is generated by symbols [X], where X is a finite G-set, modulo the following relations:

- If X and Y are isomorphic G-sets, then [X] = [Y].
- For every pair of finite G-sets X and Y, $[X \amalg Y] = [X] + [Y]$.
- (3) Let $\{H_i\}_{1 \le i \le m}$ be a collection of representatives for the conjugacy classes of subgroups of G (so that every subgroup $H \subseteq G$ is conjugate to H_i for some unique i). Show that, as an abelian group, $\operatorname{Burn}[G]$ is freely generated by the elements $[H_i \setminus G]$. That is, show that every element of $\operatorname{Burn}[G]$ can be written uniquely as a sum

$$\sum_{1 \le i \le m} c_i [H_i \backslash G],$$

for some integers c_i .