Math 155, Problem Set 5 (due October 17)

October 10, 2011
(1) Up to rotational symmetry, how many ways are there to color the faces of a regular dodecahedron using two colors?
(2) Let S be the species of derangements (so that, for every finite set $I, S[I]$ is the set of permutations of I without fixed points). Find a formula for the cycle index series $Z_{S}\left(s_{1}, s_{2}, \ldots\right)$.

Let G be a finite group. Recall that the Burnside ring Burn $[G]$ is generated by symbols $[X]$, where X is a finite G-set, modulo the following relations:

- If X and Y are isomorphic G-sets, then $[X]=[Y]$.
- For every pair of finite G-sets X and $Y,[X \amalg Y]=[X]+[Y]$.
(3) Let $\left\{H_{i}\right\}_{1 \leq i \leq m}$ be a collection of representatives for the conjugacy classes of subgroups of G (so that every subgroup $H \subseteq G$ is conjugate to H_{i} for some unique i). Show that, as an abelian group, Burn $[G]$ is freely generated by the elements $\left[H_{i} \backslash G\right]$. That is, show that every element of Burn $[G]$ can be written uniquely as a sum

$$
\sum_{1 \leq i \leq m} c_{i}\left[H_{i} \backslash G\right]
$$

for some integers c_{i}.

