Math 155, Problem Set 3 (due September 26)

September 18, 2011

Let S and T be species. An isomorphism from S to T is a collection of bijections $f_{I}: S[I] \rightarrow T[I]$ such that, for every bijection of finite sets $\pi: I \rightarrow J$, we have $T[\pi] \circ f_{I}=f_{J} \circ S[\pi]$.
(1) Let S and T be species. Construct an isomorphism between the species $\exp (S+T)$ and $\exp (S) \exp (T)$.
(2) For each $n \geq 0$, let c_{n} denote the number of ways to partition the set $\{1, \ldots, n\}$ into subsets, each of which have odd size. Give a formula for the exponential generating function

$$
\sum_{n \geq 0} \frac{c_{n}}{n!} x^{n}
$$

(3) For each $n \geq 0$, let p_{n} be the probability that a randomly chosen permutation of the set $\{1,2, \ldots, n\}$ has order divisible by 3 . Prove that $p_{n-1} \leq p_{n}$, and that the inequality is strict if and only if n is divisible by 3 .

