Math 155, Problem Set 2 (due September 19)

September 11, 2011
(1) Prove the trinomial theorem, which asserts that for $n \geq 0$ we have an equality of polynomials

$$
(x+y+z)^{n}=\sum_{p+q+r=n} \frac{n!}{p!q!r!} x^{p} y^{q} z^{r}
$$

(2) Define a power series in two variables by the formula

$$
F(x, y)=\sum_{n, k \geq 0}\binom{n}{k} x^{n} y^{k}
$$

Translate the recurrence relation $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ into an identity satisfied by the power series $F(x, y)$, and use this to give a closed-form expression for $F(x, y)$.
(3) Let D_{n} denote the number of derangements of the set $\{1,2, \ldots, n\}$. Using the formula established in class, prove the the integers D_{n} satisfy the recurrence relation

$$
D_{n+1}=n\left(D_{n}+D_{n-1}\right)
$$

for $n \geq 1$. Then give direct combinatorial proof of this identity. (Hint: decompose the set of derangements σ of $\{1, \ldots, n+1\}$ into two subsets: those derangements which satisfy $\sigma^{2}(n+1)=n+1$, and those which do not).

