Math 155, Problem Set 10 (due November 21)

November 12, 2011
(1) Let $x_{0}, x_{1}, x_{2}, \ldots$ be a sequence of distinct real numbers. Show that the sequence $\left\{x_{i}\right\}$ has a monotone subsequence: that is, a subsequence which is either strictly increasing or strictly decreasing.

For every sequence of positive integers m_{1}, \ldots, m_{t}, let $R\left(m_{1}, \ldots, m_{t}\right)$ denote the corresponding Ramsey number: that is, the smallest integer n such that if G is a complete graph on n vertices, then every edge coloring of G using the set of colors $\left\{c_{1}, \ldots, c_{t}\right\}$ has monochromatic subgraph of size m_{i} and color c_{i}, for some $1 \leq i \leq t$.
(2) Let T be fixed. Show that

$$
R(n, n, \ldots, n) \geq t^{\frac{n}{2}}
$$

for all sufficiently large values of n.
(3) Let $m \geq 2$ be a fixed integer, and let $\delta>0$ be a positive real number. Show that

$$
R(m, n) \geq n^{\frac{m-1}{2}-\delta}
$$

for all sufficiently large values of n.

