Math 155, Problem Set 1 (due September 12)

September 5, 2011
(1) Find a partial fraction decomposition for the expression $\frac{1}{(1-x)(1-2 x)(1-3 x)}$: that is, determine constants α, β, and γ such that

$$
\frac{\alpha}{1-x}+\frac{\beta}{1-2 x}+\frac{\gamma}{1-3 x}=\frac{1}{(1-x)(1-2 x)(1-3 x)}
$$

Use this to give a closed-form expression for the Stirling numbers $\left\{\begin{array}{l}n \\ 3\end{array}\right\}$.
(2) For each integer $n \geq 0$, let c_{n} denote the number of ways to tile a 3 -by- n board with 3 -by- 1 tiles (which may be placed vertically or horizontally). Give a formula for the generating function $f(x)=$ $\sum_{n \geq 0} c_{n} x^{n}$.
(3) Let $\phi=\frac{1+\sqrt{5}}{2}$ denote the golden ratio. Prove that, for $n \geq 5$, the real number ϕ^{n} is within .1 of an integer. In other words, prove that there exists integers T_{n} with $\left|T_{n}-\phi^{n}\right|<.1$. (Hint: study the sequence of integers T_{n}, and try to find a closed-form expression for it.)

