
Math 155 Midterm with Solutions

October 7, 2011

(1) Let us say that a string of letters is valid if it satisfies the following conditions:

– It does not contain any consecutive vowels (here the letter “y” is considered to be a consonant).

– The letter “y” does not appear after a vowel or at the end of the string.

For example, the strings “abcde” and “fryer” are valid, but the strings “bead”, “grayer”, and “fry” are
not. Let cn denote the number of valid strings of length n.

(a) Find a recurrence relation satisfied by the integers cn.

(b) Use (a) to determine the generating function f(x) =
∑

n≥0 cnx
n.

(c) Give a closed-form expression for the integers cn.

Solution: Suppose first that n ≥ 2. Let X be the set of valid strings of length n. Let Xv denote the
subset of X consisting of those strings which start with a vowel, and Xc the subset consisting of those strings
which start with a consonant. To give an element of Xc, one must give the initial consonant together with
a valid string of length n− 1. We therefore obtain

|Xc| = 21cn−1.

To give an element of Xv, one must give a vowel (5 choices in all), followed by a second character which
cannot be a vowel or a “y” (20 choices in all), followed by an arbitrary valid string of length n − 2. We
therefore have |Xv| = 100cn−2. Thus

cn = |X| = |Xc|+ |Xv| = 21cn−1 + 100cn−2.

To start the recursion off, we will also need some initial values. Note that there is exactly one valid string
of length 0 (the empty string) and 25 valid strings of length 1 (any letter except for “y”).

Multiplying by xn, we obtain
cnx

n = 21cn−1x
n + 100cn−2x

n.

Summing over all n ≥ 2, we get∑
n≥2

cnx
n = 21x(

∑
n≥2

cn−1x
n−1) + 100x2(

∑
n≥2

cn−2x
n−2).

We can write this as
f(x)− 25x− 1 = 21x(f(x)− 1) + 100x2f(x),

or
(1− 21x− 100x2)f(x) = 1 + 4x.

Solving for f(x), we get

f(x) =
1 + 4x

1− 21x− 100x2
=

1 + 4x

(1 + 4x)(1− 25x)
=

1

1− 25x
.
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Expanding this in a power series, we get

f(x) = 1 + 25x + 252x2 + · · ·

so that cn = 25n.

(2) Let G be the group of rotational symmetries of a regular tetrahedron, and regard G as acting on the
set X of edges of the tetrahedron.

(a) Compute the cycle index polynomial ZG(s1, s2, . . .).

(b) Up to rotational symmetry, in how many ways can you color the edges of the tetrahedron using
three colors?

(c) In the situation of (b), how many colorings use each color exactly two times?

Solution: As we have seen in class, the group G is of order 12 and contains three types of elements:

(i) The identity element, which does not permute the edges and therefore has cycle monomial s61.

(ii) Rotations which fix a face and an opposite vertex. There are 8 of these. Each has two orbits of size 3
on the set of edges, hence the cycle monomial is given by s23.

(iii) Rotations of 180o which fix an edge. There are three of these: each one fixes a pair of opposite edges,
and permutes the remaining edges in pairs. The corresponding cycle monomial is therefore s21s

2
2.

We therefore obtain the cycle index polynomial

ZG(s1, s2, . . .) =
s61 + 8s23 + 3s21s

2
2

12
.

According to Polya’s theorem, the answer to (b) is given by

ZG(3, 3, . . .) =
36 + 8× 32 + 3× 34

12
=

1044

12
= 87.

To obtain the answer to (c), we need the more sophisticated version of Polya’s theorem that keeps track of
the number of colorings. The answer is given by the coefficient of X2Y 2Z2 in the expression

ZG(X +Y +Z,X2 +Y 2 +Z2, · · · ) =
1

12
(X +Y +Z)6 +

2

3
(X3 +Y 3 +Z3)2 +

1

4
(X +Y +Z)2(X2 +Y 2 +Z2)2.

Using the multinomial theorem, the coefficient in the first summand is given by

1

12

6!

2!2!2!
=

720

12× 8
=

15

2
.

The coefficient in the second summand vanishes (since each of the variables has exponent at least 3). The
coefficient in the third summand is given by adding the coefficient of X2 in 1

4 (X+Y +Z)2 times the coefficient
of Y 2Z2 in (X2 +Y 2 +Z2)2 to two other (identical) terms, and is therefore given by 3

4 ×1×2 = 3
2 . Summing

these coefficients, we see that there are
15

2
+

3

2
= 9

ways to color the edges of a tetrahedron using each of three colors exactly twice, up to rotational symmetries.

(3) Let G be a finite group acting on a finite set X. Prove that the number of orbits of G on X is given

by evaluating the polynomial ∂ ZG(s1,s2,...)
∂ s1

at s1 = s2 = · · · = 1.
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Solution: Let g ∈ G be an element and

Zg(s1, s2, . . .) = sk1
1 sk2

2 · · ·

the corresponding cycle monomial. Then

∂ Zg

∂ s1
= k1s

k1−1
1 sk2

2 sk3
3 · · ·

Evaluating at s1 = s2 = s3 = · · · = 1, we obtain the integer k1, which is the number of fixed points for the
action of g on the set X. We therefore have

∂ ZG(s1, s2, . . .)

∂ s1
|si=1 =

1

|G|
∑
g∈G

∂ Zg

∂ s1
|si=1

=
∑
g∈G
|Xg|,

which is equal to the number of orbits of G on X by virtue of Burnside’s formula.
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