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Definition 1. Let G be a graph. A path in G is a sequence of vertices vy, . .., v, such that v; is adjacent to
v;—1 for 1 <14 < n. In this case, we also say (vg,...,v,) is a path from vy to v,. We say that a path is simple
if the vertices v; are disjoint. We say that a simple path (vo,...,v,) is a cycle if n > 2 and vy is adjacent to
Up,.

We say that a graph G is connected if every pair of vertices can be connected by a path. We say that G
is a tree if it is connected and contains no cycles.

The problem we will consider in this lecture is the following:
Question 2. How many trees are there having the set of vertices {1,...,n}?

The answer turns out to be n™"~2. There are many different proofs of this result. In this lecture, we will
give a proof using the composition formula for exponential generating functions. First, it is convenient to
introduce a slight variation on Question 2.

Question 3. How many ways are there to choose a tree having the set of vertices {1,...,n}, together with
an ordered pair of (possibly identical) vertices of the tree?

It is clear that the answer to Question 3 differs from the answer to Question ?? by a factor of n?. We
will show that the answer to Question 3 is n™. We already know another counting problem whose answer is
n™: namely, it is the number of maps from the set {1,2,...,n} to itself. To discuss these counting problems
in more detail, it is convenient to introduce some species:

Definition 4. Let Sgnq denote the species of endomorphisms: for each finite set I, Sgna[I] is the set of all
maps from I to itself.
We define a species So_tree as follows:

e If I is nonempty, then Ss_tree[I] is the collection of all triples (T, 4, j) where ¢ and j are elements of I,
and T is a tree with vertex set I.

o If I = @, then SQ—tree[I] = {*}

We would like to show that for every nonempty finite set I, the sets Sgna[l] and Sa_tree[] have the same
number of elements (our ad-hoc definition of S50 [()] was made to ensure that this is also correct when [ is
empty). Equivalently, we would like to show that the exponential generating functions of Sgng and So_iyee
coincide.

Warning 5. The species Sgnq and So_tyee are not isomorphic. For example, when I = {1, 2}, then the sets
Skna[I] and Sa_iee[I] are acted on by the symmetric group Xo. This action has no fixed points on So_tyee[I],
but has two fixed points on Sgpq[f]. This is what makes Question 2 interesting: though it has a simple
answer, there is no obvious bijective approach.

Let’s begin by analyzing the species Sgnq. Suppose that [ is a finite set and we are givenamap 7w : [ — 1.
What could I look like? It might be a permutation of I. Let Sperm denote the species of permutations, so
that Sperm|[[] is the set of permutations of I. However, there are many maps from I to itself which are not
permutations. For example, at the other extreme, there are constant maps from I to itself.



Definition 6. Let m be a map from a finite set I to itself. We will say that « is nilpotent if some power of
7 is a constant map. In other words, 7 is nilpotent if there exists an element ¢ € I such that for each j € I,
we have 7" (j) = ¢ for all sufficiently large n. We let Sy;; denote the species of nilpotent endomorphisms: for
every finite set I, we let Sy;i[I] denote the set of all nilpotent maps from I to itself.

Remark 7. If 7 : I — I is a nilpotent map, then there is a unique element ¢ € I such that 7"(j) = ¢ for
n > 0. We will call ¢ the attractor of .

Note that if I has more than one element, then no map w : I — I can be both a permutation and
nilpotent (otherwise, some power of m would be a constant permutation). We now show that, in some sense,
every map is made out of nilpotent maps and permutations.

Proposition 8. There is an isomorphism of species Sgnd =~ Sperm © Shil-

Proof. Let I be a finite set. By definition, an element of Sperm corresponds to the following data:
(a) An equivalence relation ~ on the set I.
(b) A permutation o of the set I/ ~ of equivalence classes.
(¢) For each equivalence class J C I, a nilpotent map 7 : J — J.

Let us first describe how, given this data, we can construct a map 7 : I — I. Each of the nilpotent maps
77 has an attractor, which we will denote by i;. Let Iy C I be the collection of all these attractors. The
composition Iy — I — I/ ~ is a bijection (that is, Iy contains exactly one element of each equivalence class),
so we may regard o as a permutation of the set Iy. We now set

() = o(i) ifiel
CsG) ifieJ—{is}.

Conversely, suppose that we start with an arbitrary map 7 : I — I. We will say that an element ¢ € |
is periodic if there exists an integer n > 0 such that #™(i) = i. Let Iy denote the collection of periodic
elements of I. The map 7 carries periodic elements to periodic elements (note that if 7™(i) = 4, then
aw(i) = 7" (i) = 7(i)), and restricts to a permutation on the subset Iy C I. For each element i € I, the

sequence
i, m(i), 72 (), ...

must eventually repeat (since I is finite), and therefore contains a periodic element of I. We will denote
the first periodic element of the sequence by r(i). The map r determines an equivalence relation on I: let
us write ¢ ~ j if (i) = r(j). Note that each equivalence class contains a unique element of . Let J be
an arbitrary equivalence class containing an element iy € Iy. For each element j € Iy, we have n"(j) =i
for some integer n > 0, and 7™ (j) ¢ Ip for m < n. If j # iy, then n > 0, so that 7"~ 1(7(j)) = i; (and
7w () ¢ I for m < n —1). It follows that 7(j) € J, so that 7 determines a map

TJiJ*{Z'J}—)J.

This extends to a nilpotent map from J to itself, if we set 7;(iy) = i;. Then the triple (~, 0o, {TJ}JQ/N) is
an element of (Sperm © Sni)[Z].
The above constructions determine maps of species

Sperrn © Snil — SEnd

Sperm © Snil <~ SEnd~

We leave it to the reader as an exercise to show that these maps really are inverse to one another, and
therefore determine an isomorphism Sperm © Snil 2 SEnd- O]



We would now like to relate the above discussion to trees. First, we need a few basic facts from graph
theory.

Lemma 9. Let G be a tree containing vertices v andv'. Then there is a unique simple path v = vg, v1, Ve, ..., Uy =
v from v to v'.

Proof. Since G is connected, there is at least one path v = vg,v1,...,v, = v’ from v to v’. The number n is
called the length of the path; let us assume that n has been chosen as small as possible. We claim that this
path is automatically simple: if v; = v; for i < 7, then

V=00, Ve 1,V = U, Vjpdy oo ey Uy = U
is a shorter path from v to v'. This proves existence.

Now we prove uniqueness. Choose a path v = vy, ..., v, = v’ of minimal length. We will use induction
on n to show that every other simple path v = wy, ..., w, = v’ coincides with (vo,...,v,). The case n =0
is trivial: if v = ¢, then every simple path from v to v’ is automatically of length 0O (since the vertices
appearing in the path must be distinct).

By assumption, we have v, = v = wy,. Let i be the smallest positive integer such that v; € {w1,..., wn},
and write v; = w;. Then the sequence

Vo, V1y---,V; = W;j,Wj—-1,...,W1

is a simple path from vy to wy. If i + j > 2, this is a cycle. We must therefore have ¢ = j = 1. This proves
that v = w;. We then have two simple paths (v1,...,v,) and (w1, ..., w,) from v; = wy to v, which must
coincide by the inductive hypothesis. O

Definition 10. A rooted tree is a tree T together with a choice of vertex r € T, called the root of T. We
let S1_tree denote the species of rooted trees: for each finite set I, we let S7_tree[V] denote the set of pairs
(r,T), where r € V and T is a tree with vertex set V.

Proposition 11. The species S1_iree and Sy are isomorphic.

Proof. Let V be a finite set. We will show that there is a canonical bijection between S1_¢ree[V] and Syu[V].
First, suppose we are given a tree T with vertex set V and a choice of root . We define a function 7 : V — V
as follows. For each element v # r in V, let v = vy, v1,...,v, = T be the unique simple path from v to the
root 7. Then we set w(v) = v1. If v =7, we let w(r) = r. It is easy to see that the function = is nilpotent
(with attractor r).

Conversely, suppose that we are given a nilpotent function 7 : V. — V, and let r be the attractor of
m. We can make V into a graph by declaring that a pair of distinct vertices v and w are adjacent if either
v = 7m(w) or w = w(v). We claim that this graph is always a tree. To prove this, suppose we are given a
cycle

Vo, V1y.--,Un.

For 1 < i < n, we have either v; = m(v;—1) or m(v;) = v;—1. Note that in the second case, since v;+1 # v;_1,
we must also have m(v;41) = v;. It follows that the path is given by

Vo, 7T(1}0)77T2(’U0)’ s ’7.(.17(,1}0) = Wo, W1, W2, ..., Wq

where p+ ¢ = n and the sequence {w;} satisfies m(w;) = w;_1. If the path is a cycle, then either 7(vg) = w,
or m(wy) = vo. In the first case, we must have p = 0 (otherwise v; = vy), so that 771w, = w,, which
implies that w, = r and therefore ¢ = 0, a contradiction. In the second case we must have ¢ = 0 (otherwise
v = V1) in which case we have 7P+ 1vy = vg, which implies that vy = 7 so that p = 0, again a contradiction.

We again leave it to the reader to show that these constructions are inverse to one another, and give an
isomorphism of species S1_tree = Shil- O



Combining Propositions 8 and 11, we get an isomorphism of species
SEnd ~ Sperm 0 S1—tree-
To complete our analysis, we will need the following analogous fact:

Proposition 12. Let Sy, denote the species of linear orderings. There is an isomorphism of species So_tree =~
Slin o Slftree-

Assuming Proposition 12 for the moment and using the composition formula, we obtain
Fp,0 (1) = F8pern (F51 _pree (7))

FS27tree (l‘) = FSlin (Fslftree (Z‘))

We have already seen that, although the species Sperm and Sy, are different, they have the same exponential
generating function ) -, %:x" = ﬁ We therefore obtain

1

Fogaa(@) = T—Fs. . (2)
l1—tree

=Fg, e (I)
This proves that the number of elements of Sa_tree[/] is the same as the number of elements of Sgpq[I] for
every finite set I, thereby giving n" 2 as the answer to Question 2.

Let us now prove Proposition 12. For each finite set V', we must construct a bijection from the set
Sa—tree[V] to the set (Sin © S1—tree)[V]. It is clear what to do if V' is empty (in that case, both sides have
one element). Let us therefore assume that V' is nonempty, so that an element of S3_tree[V] corresponds
to a triple (T,v,v’), where T is a tree with vertex set V, and v,v" € V are elements. To this, we wish to
associate the following data:

(a) An equivalence relation ~ on the set V.
(b) A linear ordering of the set of equivalence classes V/ ~.
(¢) For each equivalence class W C V| a rooted tree with vertex set W.

We first invoke Lemma 9: since T is a tree, there is a unique simple path

V=00, V1., U =0

from v to v'. Let Vo = {vg,...,v,} be the set of vertices along this path. For any vertex w € V|, there exists
a simple path w = wy, ..., w,, which ends in a vertex w,, which belongs to V{. In fact, we can assume that
w; ¢ Vo for i < m (otherwise, end the path at w; instead). In this case, we claim that the path wo, ..., wn
is unique. Suppose otherwise: that is, suppose that we have another simple path w = w(,w),...,w),
with w;,, € Vo and wj ¢ Vp for j < m'. If w;,, = wp, this contradicts Lemma 9. Otherwise, we may
suppose that w, = v; and w),, = v; for i < j. Let k be the largest integer such that wj appears in
the path wy,...,w},, (such an integer exists, since wy = w = wy). Writing wy = wj,, we obtain a cycle
Wiy WhA 15+ -+ Win = Vi, Vigly -5 Vj = Wy, Wyr_q,s- -+, Wi 1, contradicting our assumption that 7' is a tree.

For each w € V, let 7(w) € V, be the endpoint of the unique path constructed above. Let us define an
equivalence relation on V' by writing w ~ w’ if 7(w) = 7(w’). Then the composition Vo — V — V/ ~ is a
bijection: that is, V5 contains a unique element of each equivalence class. Writing Vy = {vg,v1,...,vn}, we
obtain a linear ordering on the set V/ ~. Each equivalence class W € V/ ~ has the form 77{v;} for some
0 < i < n. Note that if w € 77 v;, there is a simple path w = wy, . .., Wy, = v; from w to v; which contains
no other vertex of Vy. Each of the paths w;, w41, ..., w,, has the same property, so that 7(w;) = v; for
0 < j < m. It follows that w can be connected to v; by a path lying entirely in W, so that W determines
a connected subgraph of T'. This subgraph cannot contain any cycles (since 7' does not contain any cycles)
and is therefore a tree (which has a natural choice of root, given by the vertex v; € Vp).

We leave it to the reader to verify that this construction determines a bijection of So_tree[V] with
(Siin © S1—tree)[V] (if it is not clear, try drawing a picture for yourself).

/



