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Definition 1. Let G be a graph. A path in G is a sequence of vertices v0, . . . , vn such that vi is adjacent to
vi−1 for 1 ≤ i ≤ n. In this case, we also say (v0, . . . , vn) is a path from v0 to vn. We say that a path is simple
if the vertices vi are disjoint. We say that a simple path (v0, . . . , vn) is a cycle if n ≥ 2 and v0 is adjacent to
vn.

We say that a graph G is connected if every pair of vertices can be connected by a path. We say that G
is a tree if it is connected and contains no cycles.

The problem we will consider in this lecture is the following:

Question 2. How many trees are there having the set of vertices {1, . . . , n}?

The answer turns out to be nn−2. There are many different proofs of this result. In this lecture, we will
give a proof using the composition formula for exponential generating functions. First, it is convenient to
introduce a slight variation on Question 2.

Question 3. How many ways are there to choose a tree having the set of vertices {1, . . . , n}, together with
an ordered pair of (possibly identical) vertices of the tree?

It is clear that the answer to Question 3 differs from the answer to Question ?? by a factor of n2. We
will show that the answer to Question 3 is nn. We already know another counting problem whose answer is
nn: namely, it is the number of maps from the set {1, 2, . . . , n} to itself. To discuss these counting problems
in more detail, it is convenient to introduce some species:

Definition 4. Let SEnd denote the species of endomorphisms: for each finite set I, SEnd[I] is the set of all
maps from I to itself.

We define a species S2−tree as follows:

• If I is nonempty, then S2−tree[I] is the collection of all triples (T, i, j) where i and j are elements of I,
and T is a tree with vertex set I.

• If I = ∅, then S2−tree[I] = {∗}.

We would like to show that for every nonempty finite set I, the sets SEnd[I] and S2−tree[I] have the same
number of elements (our ad-hoc definition of S2−tree[∅] was made to ensure that this is also correct when I is
empty). Equivalently, we would like to show that the exponential generating functions of SEnd and S2−tree
coincide.

Warning 5. The species SEnd and S2−tree are not isomorphic. For example, when I = {1, 2}, then the sets
SEnd[I] and S2−tree[I] are acted on by the symmetric group Σ2. This action has no fixed points on S2−tree[I],
but has two fixed points on SEnd[I]. This is what makes Question 2 interesting: though it has a simple
answer, there is no obvious bijective approach.

Let’s begin by analyzing the species SEnd. Suppose that I is a finite set and we are given a map π : I → I.
What could I look like? It might be a permutation of I. Let Sperm denote the species of permutations, so
that Sperm[I] is the set of permutations of I. However, there are many maps from I to itself which are not
permutations. For example, at the other extreme, there are constant maps from I to itself.
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Definition 6. Let π be a map from a finite set I to itself. We will say that π is nilpotent if some power of
π is a constant map. In other words, π is nilpotent if there exists an element i ∈ I such that for each j ∈ I,
we have πn(j) = i for all sufficiently large n. We let Snil denote the species of nilpotent endomorphisms: for
every finite set I, we let Snil[I] denote the set of all nilpotent maps from I to itself.

Remark 7. If π : I → I is a nilpotent map, then there is a unique element i ∈ I such that πn(j) = i for
n� 0. We will call i the attractor of π.

Note that if I has more than one element, then no map π : I → I can be both a permutation and
nilpotent (otherwise, some power of π would be a constant permutation). We now show that, in some sense,
every map is made out of nilpotent maps and permutations.

Proposition 8. There is an isomorphism of species SEnd ' Sperm ◦ Snil.

Proof. Let I be a finite set. By definition, an element of Sperm corresponds to the following data:

(a) An equivalence relation ∼ on the set I.

(b) A permutation σ of the set I/ ∼ of equivalence classes.

(c) For each equivalence class J ⊆ I, a nilpotent map τJ : J → J .

Let us first describe how, given this data, we can construct a map π : I → I. Each of the nilpotent maps
τJ has an attractor, which we will denote by iJ . Let I0 ⊆ I be the collection of all these attractors. The
composition I0 → I → I/ ∼ is a bijection (that is, I0 contains exactly one element of each equivalence class),
so we may regard σ as a permutation of the set I0. We now set

π(i) =

{
σ(i) if i ∈ I0
τJ(i) if i ∈ J − {iJ}.

Conversely, suppose that we start with an arbitrary map π : I → I. We will say that an element i ∈ I
is periodic if there exists an integer n > 0 such that πn(i) = i. Let I0 denote the collection of periodic
elements of I. The map π carries periodic elements to periodic elements (note that if πn(i) = i, then
πnπ(i) = πn+1(i) = π(i)), and restricts to a permutation on the subset I0 ⊆ I. For each element i ∈ I, the
sequence

i, π(i), π2(i), . . .

must eventually repeat (since I is finite), and therefore contains a periodic element of I. We will denote
the first periodic element of the sequence by r(i). The map r determines an equivalence relation on I: let
us write i ∼ j if r(i) = r(j). Note that each equivalence class contains a unique element of I0. Let J be
an arbitrary equivalence class containing an element iJ ∈ I0. For each element j ∈ I0, we have πn(j) = iJ
for some integer n ≥ 0, and πm(j) /∈ I0 for m < n. If j 6= iJ , then n > 0, so that πn−1(π(j)) = iJ (and
πm(πj) /∈ I0 for m < n− 1). It follows that π(j) ∈ J , so that π determines a map

τJ : J − {iJ} → J.

This extends to a nilpotent map from J to itself, if we set τJ(iJ) = iJ . Then the triple (∼, σ, {τJ}J∈I/∼) is
an element of (Sperm ◦ Snil)[I].

The above constructions determine maps of species

Sperm ◦ Snil → SEnd

Sperm ◦ Snil ← SEnd.

We leave it to the reader as an exercise to show that these maps really are inverse to one another, and
therefore determine an isomorphism Sperm ◦ Snil ' SEnd.
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We would now like to relate the above discussion to trees. First, we need a few basic facts from graph
theory.

Lemma 9. Let G be a tree containing vertices v and v′. Then there is a unique simple path v = v0, v1, v2, . . . , vn =
v′ from v to v′.

Proof. Since G is connected, there is at least one path v = v0, v1, . . . , vn = v′ from v to v′. The number n is
called the length of the path; let us assume that n has been chosen as small as possible. We claim that this
path is automatically simple: if vi = vj for i < j, then

v = v0, . . . , vi−1, vi = vj , vj+1, . . . , vn = v′

is a shorter path from v to v′. This proves existence.
Now we prove uniqueness. Choose a path v = v0, . . . , vn = v′ of minimal length. We will use induction

on n to show that every other simple path v = w0, . . . , wm = v′ coincides with (v0, . . . , vn). The case n = 0
is trivial: if v = v′, then every simple path from v to v′ is automatically of length 0 (since the vertices
appearing in the path must be distinct).

By assumption, we have vn = v′ = wm. Let i be the smallest positive integer such that vi ∈ {w1, . . . , wm},
and write vi = wj . Then the sequence

v0, v1, . . . , vi = wj , wj−1, . . . , w1

is a simple path from v0 to w1. If i+ j > 2, this is a cycle. We must therefore have i = j = 1. This proves
that v1 = w1. We then have two simple paths (v1, . . . , vn) and (w1, . . . , wm) from v1 = w1 to v′, which must
coincide by the inductive hypothesis.

Definition 10. A rooted tree is a tree T together with a choice of vertex r ∈ T , called the root of T . We
let S1−tree denote the species of rooted trees: for each finite set I, we let S1−tree[V ] denote the set of pairs
(r, T ), where r ∈ V and T is a tree with vertex set V .

Proposition 11. The species S1−tree and Snil are isomorphic.

Proof. Let V be a finite set. We will show that there is a canonical bijection between S1−tree[V ] and Snil[V ].
First, suppose we are given a tree T with vertex set V and a choice of root r. We define a function π : V → V
as follows. For each element v 6= r in V , let v = v0, v1, . . . , vn = r be the unique simple path from v to the
root r. Then we set π(v) = v1. If v = r, we let π(r) = r. It is easy to see that the function π is nilpotent
(with attractor r).

Conversely, suppose that we are given a nilpotent function π : V → V , and let r be the attractor of
π. We can make V into a graph by declaring that a pair of distinct vertices v and w are adjacent if either
v = π(w) or w = π(v). We claim that this graph is always a tree. To prove this, suppose we are given a
cycle

v0, v1, . . . , vn.

For 1 ≤ i ≤ n, we have either vi = π(vi−1) or π(vi) = vi−1. Note that in the second case, since vi+1 6= vi−1,
we must also have π(vi+1) = vi. It follows that the path is given by

v0, π(v0), π2(v0), . . . , πp(v0) = w0, w1, w2, . . . , wq

where p+ q = n and the sequence {wi} satisfies π(wi) = wi−1. If the path is a cycle, then either π(v0) = wq

or π(wq) = v0. In the first case, we must have p = 0 (otherwise v1 = vn), so that πq+1wq = wq, which
implies that wq = r and therefore q = 0, a contradiction. In the second case we must have q = 0 (otherwise
v0 = vn−1) in which case we have πp+1v0 = v0, which implies that v0 = r so that p = 0, again a contradiction.

We again leave it to the reader to show that these constructions are inverse to one another, and give an
isomorphism of species S1−tree ' Snil.
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Combining Propositions 8 and 11, we get an isomorphism of species

SEnd ' Sperm ◦ S1−tree.

To complete our analysis, we will need the following analogous fact:

Proposition 12. Let Slin denote the species of linear orderings. There is an isomorphism of species S2−tree '
Slin ◦ S1−tree.

Assuming Proposition 12 for the moment and using the composition formula, we obtain

FSEnd
(x) = FSperm

(FS1−tree
(x))

FS2−tree(x) = FSlin
(FS1−tree(x)).

We have already seen that, although the species Sperm and Slin are different, they have the same exponential
generating function

∑
n≥0

n!
n!x

n = 1
1−x . We therefore obtain

FSEnd
(x) =

1

1− FS1−tree(x)
= FS2−tree

(x).

This proves that the number of elements of S2−tree[I] is the same as the number of elements of SEnd[I] for
every finite set I, thereby giving nn−2 as the answer to Question 2.

Let us now prove Proposition 12. For each finite set V , we must construct a bijection from the set
S2−tree[V ] to the set (Slin ◦ S1−tree)[V ]. It is clear what to do if V is empty (in that case, both sides have
one element). Let us therefore assume that V is nonempty, so that an element of S2−tree[V ] corresponds
to a triple (T, v, v′), where T is a tree with vertex set V , and v, v′ ∈ V are elements. To this, we wish to
associate the following data:

(a) An equivalence relation ∼ on the set V .

(b) A linear ordering of the set of equivalence classes V/ ∼.

(c) For each equivalence class W ⊆ V , a rooted tree with vertex set W .

We first invoke Lemma 9: since T is a tree, there is a unique simple path

v = v0, v1, . . . , vn = v′

from v to v′. Let V0 = {v0, . . . , vn} be the set of vertices along this path. For any vertex w ∈ V , there exists
a simple path w = w0, . . . , wm which ends in a vertex wm which belongs to V0. In fact, we can assume that
wi /∈ V0 for i < m (otherwise, end the path at wi instead). In this case, we claim that the path w0, . . . , wm

is unique. Suppose otherwise: that is, suppose that we have another simple path w = w′0, w
′
1, . . . , w

′
m′

with w′m′ ∈ V0 and w′j /∈ V0 for j < m′. If w′m′ = wm, this contradicts Lemma 9. Otherwise, we may
suppose that wm = vi and w′m′ = vj for i < j. Let k be the largest integer such that wk appears in
the path w′0, . . . , w

′
m′ (such an integer exists, since w0 = w = w′0). Writing wk = w′k′ , we obtain a cycle

wk, wk+1, . . . , wm = vi, vi+1, . . . , vj = w′m′ , w
′
m′−1, . . . , w

′
k′+1, contradicting our assumption that T is a tree.

For each w ∈ V , let τ(w) ∈ V0 be the endpoint of the unique path constructed above. Let us define an
equivalence relation on V by writing w ∼ w′ if τ(w) = τ(w′). Then the composition V0 → V → V/ ∼ is a
bijection: that is, V0 contains a unique element of each equivalence class. Writing V0 = {v0, v1, . . . , vn}, we
obtain a linear ordering on the set V/ ∼. Each equivalence class W ∈ V/ ∼ has the form τ−1{vi} for some
0 ≤ i ≤ n. Note that if w ∈ τ−1vi, there is a simple path w = w0, . . . , wm = vi from w to vi which contains
no other vertex of V0. Each of the paths wj , wj+1, . . . , wm has the same property, so that τ(wj) = vi for
0 ≤ j ≤ m. It follows that w can be connected to vi by a path lying entirely in W , so that W determines
a connected subgraph of T . This subgraph cannot contain any cycles (since T does not contain any cycles)
and is therefore a tree (which has a natural choice of root, given by the vertex vi ∈ V0).

We leave it to the reader to verify that this construction determines a bijection of S2−tree[V ] with
(Slin ◦ S1−tree)[V ] (if it is not clear, try drawing a picture for yourself).
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