Math 155 (Lecture 8)

September 19, 2011

Definition 1. Let G be a graph. A path in G is a sequence of vertices v_{0}, \ldots, v_{n} such that v_{i} is adjacent to v_{i-1} for $1 \leq i \leq n$. In this case, we also say $\left(v_{0}, \ldots, v_{n}\right)$ is a path from v_{0} to v_{n}. We say that a path is simple if the vertices v_{i} are disjoint. We say that a simple path $\left(v_{0}, \ldots, v_{n}\right)$ is a cycle if $n \geq 2$ and v_{0} is adjacent to v_{n}.

We say that a graph G is connected if every pair of vertices can be connected by a path. We say that G is a tree if it is connected and contains no cycles.

The problem we will consider in this lecture is the following:
Question 2. How many trees are there having the set of vertices $\{1, \ldots, n\}$?
The answer turns out to be n^{n-2}. There are many different proofs of this result. In this lecture, we will give a proof using the composition formula for exponential generating functions. First, it is convenient to introduce a slight variation on Question 2.

Question 3. How many ways are there to choose a tree having the set of vertices $\{1, \ldots, n\}$, together with an ordered pair of (possibly identical) vertices of the tree?

It is clear that the answer to Question 3 differs from the answer to Question ?? by a factor of n^{2}. We will show that the answer to Question 3 is n^{n}. We already know another counting problem whose answer is n^{n} : namely, it is the number of maps from the set $\{1,2, \ldots, n\}$ to itself. To discuss these counting problems in more detail, it is convenient to introduce some species:

Definition 4. Let $S_{\text {End }}$ denote the species of endomorphisms: for each finite set $I, S_{\text {End }}[I]$ is the set of all maps from I to itself.

We define a species $S_{2-\text { tree }}$ as follows:

- If I is nonempty, then $S_{2 \text {-tree }}[I]$ is the collection of all triples (T, i, j) where i and j are elements of I, and T is a tree with vertex set I.
- If $I=\emptyset$, then $S_{2-\text { tree }}[I]=\{*\}$.

We would like to show that for every nonempty finite set I, the sets $S_{\text {End }}[I]$ and $S_{2 \text {-tree }}[I]$ have the same number of elements (our ad-hoc definition of $S_{2-\text { tree }}[\emptyset]$ was made to ensure that this is also correct when I is empty). Equivalently, we would like to show that the exponential generating functions of $S_{\text {End }}$ and $S_{2 \text {-tree }}$ coincide.

Warning 5. The species $S_{\text {End }}$ and $S_{2-\text { tree }}$ are not isomorphic. For example, when $I=\{1,2\}$, then the sets $S_{\text {End }}[I]$ and $S_{2-\text { tree }}[I]$ are acted on by the symmetric group Σ_{2}. This action has no fixed points on $S_{2-\text { tree }}[I]$, but has two fixed points on $S_{\text {End }}[I]$. This is what makes Question 2 interesting: though it has a simple answer, there is no obvious bijective approach.

Let's begin by analyzing the species $S_{\text {End }}$. Suppose that I is a finite set and we are given a map $\pi: I \rightarrow I$. What could I look like? It might be a permutation of I. Let $S_{\text {perm }}$ denote the species of permutations, so that $S_{\text {perm }}[I]$ is the set of permutations of I. However, there are many maps from I to itself which are not permutations. For example, at the other extreme, there are constant maps from I to itself.

Definition 6. Let π be a map from a finite set I to itself. We will say that π is nilpotent if some power of π is a constant map. In other words, π is nilpotent if there exists an element $i \in I$ such that for each $j \in I$, we have $\pi^{n}(j)=i$ for all sufficiently large n. We let $S_{\text {nil }}$ denote the species of nilpotent endomorphisms: for every finite set I, we let $S_{\text {nil }}[I]$ denote the set of all nilpotent maps from I to itself.

Remark 7. If $\pi: I \rightarrow I$ is a nilpotent map, then there is a unique element $i \in I$ such that $\pi^{n}(j)=i$ for $n \gg 0$. We will call i the attractor of π.

Note that if I has more than one element, then no map $\pi: I \rightarrow I$ can be both a permutation and nilpotent (otherwise, some power of π would be a constant permutation). We now show that, in some sense, every map is made out of nilpotent maps and permutations.

Proposition 8. There is an isomorphism of species $S_{\mathrm{End}} \simeq S_{\mathrm{perm}} \circ S_{\mathrm{nil}}$.
Proof. Let I be a finite set. By definition, an element of $S_{\text {perm }}$ corresponds to the following data:
(a) An equivalence relation \sim on the set I.
(b) A permutation σ of the set I / \sim of equivalence classes.
(c) For each equivalence class $J \subseteq I$, a nilpotent $\operatorname{map} \tau_{J}: J \rightarrow J$.

Let us first describe how, given this data, we can construct a map $\pi: I \rightarrow I$. Each of the nilpotent maps τ_{J} has an attractor, which we will denote by i_{J}. Let $I_{0} \subseteq I$ be the collection of all these attractors. The composition $I_{0} \rightarrow I \rightarrow I / \sim$ is a bijection (that is, I_{0} contains exactly one element of each equivalence class), so we may regard σ as a permutation of the set I_{0}. We now set

$$
\pi(i)= \begin{cases}\sigma(i) & \text { if } i \in I_{0} \\ \tau_{J}(i) & \text { if } i \in J-\left\{i_{J}\right\}\end{cases}
$$

Conversely, suppose that we start with an arbitrary map $\pi: I \rightarrow I$. We will say that an element $i \in I$ is periodic if there exists an integer $n>0$ such that $\pi^{n}(i)=i$. Let I_{0} denote the collection of periodic elements of I. The map π carries periodic elements to periodic elements (note that if $\pi^{n}(i)=i$, then $\left.\pi^{n} \pi(i)=\pi^{n+1}(i)=\pi(i)\right)$, and restricts to a permutation on the subset $I_{0} \subseteq I$. For each element $i \in I$, the sequence

$$
i, \pi(i), \pi^{2}(i), \ldots
$$

must eventually repeat (since I is finite), and therefore contains a periodic element of I. We will denote the first periodic element of the sequence by $r(i)$. The map r determines an equivalence relation on I : let us write $i \sim j$ if $r(i)=r(j)$. Note that each equivalence class contains a unique element of I_{0}. Let J be an arbitrary equivalence class containing an element $i_{J} \in I_{0}$. For each element $j \in I_{0}$, we have $\pi^{n}(j)=i_{J}$ for some integer $n \geq 0$, and $\pi^{m}(j) \notin I_{0}$ for $m<n$. If $j \neq i_{J}$, then $n>0$, so that $\pi^{n-1}(\pi(j))=i_{J}$ (and $\pi^{m}\left(\pi_{j}\right) \notin I_{0}$ for $\left.m<n-1\right)$. It follows that $\pi(j) \in J$, so that π determines a map

$$
\tau_{J}: J-\left\{i_{J}\right\} \rightarrow J .
$$

This extends to a nilpotent map from J to itself, if we set $\tau_{J}\left(i_{J}\right)=i_{J}$. Then the triple $\left(\sim, \sigma,\left\{\tau_{J}\right\}_{J \in I / \sim}\right)$ is an element of $\left(S_{\text {perm }} \circ S_{\text {nil }}\right)[I]$.

The above constructions determine maps of species

$$
\begin{aligned}
& S_{\text {perm }} \circ S_{\text {nil }} \rightarrow S_{\text {End }} \\
& S_{\text {perm }} \circ S_{\text {nil }} \leftarrow S_{\text {End }}
\end{aligned}
$$

We leave it to the reader as an exercise to show that these maps really are inverse to one another, and therefore determine an isomorphism $S_{\text {perm }} \circ S_{\text {nil }} \simeq S_{\text {End }}$.

We would now like to relate the above discussion to trees. First, we need a few basic facts from graph theory.
Lemma 9. Let G be a tree containing vertices v and v^{\prime}. Then there is a unique simple path $v=v_{0}, v_{1}, v_{2}, \ldots, v_{n}=$ v^{\prime} from v to v^{\prime}.

Proof. Since G is connected, there is at least one path $v=v_{0}, v_{1}, \ldots, v_{n}=v^{\prime}$ from v to v^{\prime}. The number n is called the length of the path; let us assume that n has been chosen as small as possible. We claim that this path is automatically simple: if $v_{i}=v_{j}$ for $i<j$, then

$$
v=v_{0}, \ldots, v_{i-1}, v_{i}=v_{j}, v_{j+1}, \ldots, v_{n}=v^{\prime}
$$

is a shorter path from v to v^{\prime}. This proves existence.
Now we prove uniqueness. Choose a path $v=v_{0}, \ldots, v_{n}=v^{\prime}$ of minimal length. We will use induction on n to show that every other simple path $v=w_{0}, \ldots, w_{m}=v^{\prime}$ coincides with $\left(v_{0}, \ldots, v_{n}\right)$. The case $n=0$ is trivial: if $v=v^{\prime}$, then every simple path from v to v^{\prime} is automatically of length 0 (since the vertices appearing in the path must be distinct).

By assumption, we have $v_{n}=v^{\prime}=w_{m}$. Let i be the smallest positive integer such that $v_{i} \in\left\{w_{1}, \ldots, w_{m}\right\}$, and write $v_{i}=w_{j}$. Then the sequence

$$
v_{0}, v_{1}, \ldots, v_{i}=w_{j}, w_{j-1}, \ldots, w_{1}
$$

is a simple path from v_{0} to w_{1}. If $i+j>2$, this is a cycle. We must therefore have $i=j=1$. This proves that $v_{1}=w_{1}$. We then have two simple paths $\left(v_{1}, \ldots, v_{n}\right)$ and $\left(w_{1}, \ldots, w_{m}\right)$ from $v_{1}=w_{1}$ to v^{\prime}, which must coincide by the inductive hypothesis.

Definition 10. A rooted tree is a tree T together with a choice of vertex $r \in T$, called the root of T. We let $S_{1 \text {-tree }}$ denote the species of rooted trees: for each finite set I, we let $S_{1-\text { tree }}[V]$ denote the set of pairs (r, T), where $r \in V$ and T is a tree with vertex set V.

Proposition 11. The species $S_{1-\text { tree }}$ and $S_{\text {nil }}$ are isomorphic.
Proof. Let V be a finite set. We will show that there is a canonical bijection between $S_{1-\text { tree }}[V]$ and $S_{\text {nil }}[V]$. First, suppose we are given a tree T with vertex set V and a choice of root r. We define a function $\pi: V \rightarrow V$ as follows. For each element $v \neq r$ in V, let $v=v_{0}, v_{1}, \ldots, v_{n}=r$ be the unique simple path from v to the root r. Then we set $\pi(v)=v_{1}$. If $v=r$, we let $\pi(r)=r$. It is easy to see that the function π is nilpotent (with attractor r).

Conversely, suppose that we are given a nilpotent function $\pi: V \rightarrow V$, and let r be the attractor of π. We can make V into a graph by declaring that a pair of distinct vertices v and w are adjacent if either $v=\pi(w)$ or $w=\pi(v)$. We claim that this graph is always a tree. To prove this, suppose we are given a cycle

$$
v_{0}, v_{1}, \ldots, v_{n}
$$

For $1 \leq i \leq n$, we have either $v_{i}=\pi\left(v_{i-1}\right)$ or $\pi\left(v_{i}\right)=v_{i-1}$. Note that in the second case, since $v_{i+1} \neq v_{i-1}$, we must also have $\pi\left(v_{i+1}\right)=v_{i}$. It follows that the path is given by

$$
v_{0}, \pi\left(v_{0}\right), \pi^{2}\left(v_{0}\right), \ldots, \pi^{p}\left(v_{0}\right)=w_{0}, w_{1}, w_{2}, \ldots, w_{q}
$$

where $p+q=n$ and the sequence $\left\{w_{i}\right\}$ satisfies $\pi\left(w_{i}\right)=w_{i-1}$. If the path is a cycle, then either $\pi\left(v_{0}\right)=w_{q}$ or $\pi\left(w_{q}\right)=v_{0}$. In the first case, we must have $p=0$ (otherwise $v_{1}=v_{n}$), so that $\pi^{q+1} w_{q}=w_{q}$, which implies that $w_{q}=r$ and therefore $q=0$, a contradiction. In the second case we must have $q=0$ (otherwise $v_{0}=v_{n-1}$) in which case we have $\pi^{p+1} v_{0}=v_{0}$, which implies that $v_{0}=r$ so that $p=0$, again a contradiction.

We again leave it to the reader to show that these constructions are inverse to one another, and give an isomorphism of species $S_{1-\text { tree }} \simeq S_{\text {nil }}$.

Combining Propositions 8 and 11, we get an isomorphism of species

$$
S_{\mathrm{End}} \simeq S_{\mathrm{perm}} \circ S_{1-\text { tree }}
$$

To complete our analysis, we will need the following analogous fact:
Proposition 12. Let $S_{\text {lin }}$ denote the species of linear orderings. There is an isomorphism of species $S_{2-\operatorname{tree}} \simeq$ $S_{\text {lin }} \circ S_{1-\text { tree }}$.

Assuming Proposition 12 for the moment and using the composition formula, we obtain

$$
\begin{aligned}
& F_{S_{\text {End }}}(x)=F_{S_{\text {perm }}}\left(F_{S_{1-\text { tree }}}(x)\right) \\
& F_{S_{2-\text { tree }}}(x)=F_{S_{\text {lin }}}\left(F_{S_{1-\text { tree }}}(x)\right) .
\end{aligned}
$$

We have already seen that, although the species $S_{\text {perm }}$ and $S_{\text {lin }}$ are different, they have the same exponential generating function $\sum_{n \geq 0} \frac{n!}{n!} x^{n}=\frac{1}{1-x}$. We therefore obtain

$$
F_{S_{\text {End }}}(x)=\frac{1}{1-F_{S_{1-\text { tree }}}(x)}=F_{S_{2-\text { tree }}}(x)
$$

This proves that the number of elements of $S_{2-\text { tree }}[I]$ is the same as the number of elements of $S_{\text {End }}[I]$ for every finite set I, thereby giving n^{n-2} as the answer to Question 2.

Let us now prove Proposition 12. For each finite set V, we must construct a bijection from the set $S_{2-\text { tree }}[V]$ to the set $\left(S_{\text {lin }} \circ S_{1-\text { tree }}\right)[V]$. It is clear what to do if V is empty (in that case, both sides have one element). Let us therefore assume that V is nonempty, so that an element of $S_{2-\text { tree }}[V]$ corresponds to a triple $\left(T, v, v^{\prime}\right)$, where T is a tree with vertex set V, and $v, v^{\prime} \in V$ are elements. To this, we wish to associate the following data:
(a) An equivalence relation \sim on the set V.
(b) A linear ordering of the set of equivalence classes V / \sim.
(c) For each equivalence class $W \subseteq V$, a rooted tree with vertex set W.

We first invoke Lemma 9: since T is a tree, there is a unique simple path

$$
v=v_{0}, v_{1}, \ldots, v_{n}=v^{\prime}
$$

from v to v^{\prime}. Let $V_{0}=\left\{v_{0}, \ldots, v_{n}\right\}$ be the set of vertices along this path. For any vertex $w \in V$, there exists a simple path $w=w_{0}, \ldots, w_{m}$ which ends in a vertex w_{m} which belongs to V_{0}. In fact, we can assume that $w_{i} \notin V_{0}$ for $i<m$ (otherwise, end the path at w_{i} instead). In this case, we claim that the path w_{0}, \ldots, w_{m} is unique. Suppose otherwise: that is, suppose that we have another simple path $w=w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{m^{\prime}}^{\prime}$ with $w_{m^{\prime}}^{\prime} \in V_{0}$ and $w_{j}^{\prime} \notin V_{0}$ for $j<m^{\prime}$. If $w_{m^{\prime}}^{\prime}=w_{m}$, this contradicts Lemma 9 . Otherwise, we may suppose that $w_{m}=v_{i}$ and $w_{m^{\prime}}^{\prime}=v_{j}$ for $i<j$. Let k be the largest integer such that w_{k} appears in the path $w_{0}^{\prime}, \ldots, w_{m^{\prime}}^{\prime}$ (such an integer exists, since $w_{0}=w=w_{0}^{\prime}$). Writing $w_{k}=w_{k^{\prime}}^{\prime}$, we obtain a cycle $w_{k}, w_{k+1}, \ldots, w_{m}=v_{i}, v_{i+1}, \ldots, v_{j}=w_{m^{\prime}}^{\prime}, w_{m^{\prime}-1}^{\prime}, \ldots, w_{k^{\prime}+1}^{\prime}$, contradicting our assumption that T is a tree.

For each $w \in V$, let $\tau(w) \in V_{0}$ be the endpoint of the unique path constructed above. Let us define an equivalence relation on V by writing $w \sim w^{\prime}$ if $\tau(w)=\tau\left(w^{\prime}\right)$. Then the composition $V_{0} \rightarrow V \rightarrow V / \sim$ is a bijection: that is, V_{0} contains a unique element of each equivalence class. Writing $V_{0}=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$, we obtain a linear ordering on the set V / \sim. Each equivalence class $W \in V / \sim$ has the form $\tau^{-1}\left\{v_{i}\right\}$ for some $0 \leq i \leq n$. Note that if $w \in \tau^{-1} v_{i}$, there is a simple path $w=w_{0}, \ldots, w_{m}=v_{i}$ from w to v_{i} which contains no other vertex of V_{0}. Each of the paths $w_{j}, w_{j+1}, \ldots, w_{m}$ has the same property, so that $\tau\left(w_{j}\right)=v_{i}$ for $0 \leq j \leq m$. It follows that w can be connected to v_{i} by a path lying entirely in W, so that W determines a connected subgraph of T. This subgraph cannot contain any cycles (since T does not contain any cycles) and is therefore a tree (which has a natural choice of root, given by the vertex $v_{i} \in V_{0}$).

We leave it to the reader to verify that this construction determines a bijection of $S_{2-\text { tree }}[V]$ with $\left(S_{\text {lin }} \circ S_{1-\text { tree }}\right)[V]$ (if it is not clear, try drawing a picture for yourself).

