
Math 155 (Lecture 7)

September 16, 2011

In this lecture, we describe some applications of the composition formula

FS◦T (x) = FS(FT (x))

proved in the last lecture. We will be particularly interested in the case where S = SSet is the species of
finite sets, so that S[I] = {∗} for every finite set I and therefore FS(x) = ex. We will refer to S ◦ T as the
exponential of the species T and denote it by exp(T ), so that our formula reads

Fexp(T )(x) = eFT (x).

Example 1. Let S be the species of graphs: that is, S[I] is the set of all graphs with vertex set I. Note
that S[I] is just the collection of all subsets of unordered pairs of elements of I, and therefore has cardinality

2(|I|
2 ). We conclude that the exponential generating function of S is given by

FS(x) =
∑
n≥0

2(n
2)

n!
xn = 1 + x+

2

2
x2 +

8

6
x3 +

64

24
x4 + · · · .

This function is unlikely to be familiar: the coefficients in the numerator grow faster than the coefficients in
the denominator, so the power series does not converge for any nonzero value of x.

Let T be the species of connected graphs: that is, for each finite set I, T [I] is the set of all connected
graphs with vertex set I (by convention, we agree that the empty graph is not connected). Every graph
with vertex set I can be uniquely decomposed into connected components. It follows that to give a graph
with vertex set I, one must give an equivalence relation on I (the relation of “being in the same connected
component”) and, for each equivalence class, a connected graph with that vertex set. It follows that S is
the exponential of the species T : we have an isomorphism of species S = exp(T ) and therefore an equality
of generating functions

FS(x) = eFT (x).

We can use this to solve for FT (x): we get

FT (x) = logFS(x) = log(1 + x+
2

2
x2 +

8

6
x3 + · · · ).

This does not obviously give us a closed form expression for FT (x) (that is, a closed form expression for the
number of labelled connected graphs of a fixed size). But it does give us a reasonable approach to computing
this number, which is much more efficient than trying to make a direct count.

Example 2. Let S be the species of permutations (so that S[I] is the set of all permutation of I) and let S0

be the species of cyclic permutations, so that S0[I] is the set of all permutations of I having only one orbit
(by convention, the identity permutation of the empty set is not cyclic: it has zero orbits, rather than one).
We already have a formula for the exponential generating function FS(x): it is given by∑

n≥0

n!

n!
xn =

∑
n≥0

xn =
1

1− x
.
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Every permutation π of a set I determines an equivalence relation on I, given by “being in the same orbit”.
To specify the permutation π, we must give this equivalence relation together with a cyclic permutation
of each equivalence class. We therefore have an isomorphism of species S ' exp(S0), hence an equality of
exponential generating functions

FS(x) = eFS0
(x).

It follows that

FS0
(x) = logFS(x) = log(

1

1− x
) =

∑
n≥1

xn

n
.

From this, we deduce that if I is a finite set of size n ≥ 1, then S0[I] has n!
n = (n − 1)! elements. In other

words, there are exactly (n− 1)! cyclic permutations of the set {1, 2, . . . , n}.

Example 2 is not the best illustration of the power of our method: it is fairly easy to show that there are
(n− 1)! cyclic permutations of the set {1, 2, . . . , n} by a direct combinatorial argument (exercise). Here is a
much trickier question:

Question 3. How many permutations of the set {1, . . . , n} have odd order? What is the probability that a
randomly chosen permutation has odd order?

Let’s denote the number of odd order permutations of the set {1, 2, . . . , n} by an.

Example 4. When n = 0 or n = 1, the only permutation of the set {1, . . . , n} is the identity, which has
odd order. Thus a0 = a1 = 1.

The set {1, 2} has two permutations, one of which has odd order and one of which does not. We therefore
have a2 = 1. The set {1, 2, 3} has six permutations. Of these, the permutations of odd order include the
identity and the two cyclic permutations, so that a2 = 3.

The odd-order permutations of the set {1, 2, 3, 4} include the identity permutation and those permutations
which fix a single element and restrict to a 3-cycle on the remaining elements. Of the latter type, there are
four choices for the fixed point and two choices for the cycle. We therefore have a4 = 1 + 2× 4 = 9.

Odd order permutations of the set {1, 2, 3, 4, 5} come in three types: cyclic permutations (of which there
are (5− 1)! = 24), permutations with two fixed points and a three-cycle (of which there are 2

(
5
2

)
= 20), and

the identity permutation. It follows that a5 = 24 + 20 + 1 = 45.

It is a bit more instructive to list the probabilities an

n! : these are given by 1, 1, 12 ,
1
2 ,

3
8 ,

3
8 , . . . Here we might

notice two patterns:

(a) The sequence of probabilities an

n! is non-increasing.

(b) We have a2n

(2n)! = a2n+1

(2n+1)! .

We will use generating functions to show that both of these patterns persist. Let S be denote the species
of odd-order permutations: that is, S[I] is the set of all permutations of I having odd order, for each finite
set I. Note that a permutation of I has odd order if and only if of its cycles has odd length. We may
therefore write S = exp(S0), where S0 is the species of odd cycles: that is,

S0[I] =

{
{ cyclic permutations of I } if |I| = 2k + 1

∅ if |I| = 2k.

We have already seen that a set of size 2k + 1 has exactly 2k! cyclic permutations. It follows that the
exponential generating function of FS0(x) is given by

∑
k≥0

2k!

(2k + 1)!
x2k+1 = x+

x3

3
+
x5

5
+ · · · .
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To obtain a closed formula for this, we take as our starting point the equality

log
1

1− x
= x+

x2

2
+
x3

3
+
x4

4
+ · · ·

Changing the sign of x, we also have

log
1

1 + x
= −x+

x2

2
− x3

3
+
x4

4
− · · ·

Subtracting the second equation from the first, we get

log
1

1− x
− log

1

1 + x
= 2FS0(x),

so that FS0
(x) = 1

2 (log 1
1−x + log(1 + x)) = log

√
1+x
1−x . It follows that

FS(x) = eFS0
(x) =

√
1 + x

1− x
=

√
1− x2
1− x

.

To obtain a closed form expression for the numbers an, it is convenient to use the binomial formula

(1− x2)1/2 =
∑
k≥0

( 1
2

k

)
(−x2)k

=
∑
k≥0

( 1
2 )( 1

2 − 1)( 1
2 − 2) · · · ( 1

2 − k + 1)

k!
(−1)kx2k.

It follows that the coefficient an

n! of xn in FS(x) = 1
1−x (1− x2)

1
2 is given by

∑
0≤k≤n

2

( 1
2 )( 1

2 − 1)( 1
2 − 2) · · · ( 1

2 − k + 1)

k!
(−1)k = 1−

∑
1≤k≤n

2

(2k − 3)(2k − 5) · · · (1)

k!2k.

= 1−
∑

1≤k≤n
2

(2k − 3)!

k!(k − 2)!22k−2

From this formula we can immediately read off properties (a) and (b): the range of the summation is the
same for n = 2m and n = 2m + 1, and increasing n only increases the number of terms that need to be
subtracted (each of which is positive).

Question 5. Can you find a direct combinatorial proof of assertions (a) and (b)?
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