Math 155 (Lecture 7)

September 16, 2011

In this lecture, we describe some applications of the composition formula
Fsor(r) = Fs(Fr(z))

proved in the last lecture. We will be particularly interested in the case where S = Sset is the species of
finite sets, so that S[I]| = {*} for every finite set I and therefore Fg(z) = e”. We will refer to S o T as the
exponential of the species T and denote it by exp(T'), so that our formula reads

FexP(T) (l‘) = eFT(x)'

Example 1. Let S be the species of graphs: that is, S[I] is the set of all graphs with vertex set I. Note
that S[I] is just the collection of all subsets of unordered pairs of elements of I, and therefore has cardinality
2(‘9). We conclude that the exponential generating function of S is given by
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This function is unlikely to be familiar: the coefficients in the numerator grow faster than the coefficients in
the denominator, so the power series does not converge for any nonzero value of x.

Let T be the species of connected graphs: that is, for each finite set I, T[I] is the set of all connected
graphs with vertex set I (by convention, we agree that the empty graph is not connected). Every graph
with vertex set I can be uniquely decomposed into connected components. It follows that to give a graph
with vertex set I, one must give an equivalence relation on I (the relation of “being in the same connected
component”) and, for each equivalence class, a connected graph with that vertex set. It follows that S is
the exponential of the species T: we have an isomorphism of species S = exp(T') and therefore an equality

of generating functions
Fs(z) = efr@),

We can use this to solve for Fr(z): we get
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This does not obviously give us a closed form expression for Fr(z) (that is, a closed form expression for the
number of labelled connected graphs of a fixed size). But it does give us a reasonable approach to computing
this number, which is much more efficient than trying to make a direct count.

Example 2. Let S be the species of permutations (so that S[I] is the set of all permutation of I) and let Sy
be the species of cyclic permutations, so that So[I] is the set of all permutations of I having only one orbit
(by convention, the identity permutation of the empty set is not cyclic: it has zero orbits, rather than one).
We already have a formula for the exponential generating function Fs(x): it is given by
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Every permutation 7 of a set I determines an equivalence relation on I, given by “being in the same orbit”.
To specify the permutation 7, we must give this equivalence relation together with a cyclic permutation
of each equivalence class. We therefore have an isomorphism of species S ~ exp(Sy), hence an equality of
exponential generating functions

Fg(x) = el'so (@)

It follows that

Fi () = 10g F(z) = log(~—) = 3= =

From this, we deduce that if I is a finite set of size n > 1, then Sy[I] has %‘ = (n — 1)! elements. In other
words, there are exactly (n — 1)! cyclic permutations of the set {1,2,...,n}.

Example 2 is not the best illustration of the power of our method: it is fairly easy to show that there are
(n —1)! cyclic permutations of the set {1,2,...,n} by a direct combinatorial argument (exercise). Here is a
much trickier question:

Question 3. How many permutations of the set {1,...,n} have odd order? What is the probability that a
randomly chosen permutation has odd order?

Let’s denote the number of odd order permutations of the set {1,2,...,n} by a,.

Example 4. When n = 0 or n = 1, the only permutation of the set {1,...,n} is the identity, which has
odd order. Thus ag = a; = 1.

The set {1, 2} has two permutations, one of which has odd order and one of which does not. We therefore
have ag = 1. The set {1,2,3} has six permutations. Of these, the permutations of odd order include the
identity and the two cyclic permutations, so that as = 3.

The odd-order permutations of the set {1, 2,3, 4} include the identity permutation and those permutations
which fix a single element and restrict to a 3-cycle on the remaining elements. Of the latter type, there are
four choices for the fixed point and two choices for the cycle. We therefore have ay =142 x4 =9.

Odd order permutations of the set {1,2,3,4,5} come in three types: cyclic permutations (of which there
are (5 — 1)! = 24), permutations with two fixed points and a three-cycle (of which there are 2(;) = 20), and
the identity permutation. It follows that a5 = 24 + 20 + 1 = 45.

It is a bit more instructive to list the probabilities 7% : these are given by 1,1 11 %, %, ... Here we might
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(a) The sequence of probabilities 2+ is non-increasing.

(t) We have s = 32t

We will use generating functions to show that both of these patterns persist. Let S be denote the species
of odd-order permutations: that is, S[I] is the set of all permutations of I having odd order, for each finite
set I. Note that a permutation of I has odd order if and only if of its cycles has odd length. We may
therefore write S = exp(Sp), where Sy is the species of odd cycles: that is,

SolI] = { cyclic permutations of T }  if |[I| =2k +1
e if |1] = 2.

We have already seen that a set of size 2k + 1 has exactly 2k! cyclic permutations. It follows that the
exponential generating function of Fg,(x) is given by
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To obtain a closed formula for this, we take as our starting point the equality
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Changing the sign of x, we also have
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Subtracting the second equation from the first, we get
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so that Fg,(z) = 4 (log 1 + log(1 + 2)) = log y/1X£. It follows that
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To obtain a closed form expression for the numbers a.,, it is convenient to use the binomial formula
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It follows that the coefficient % of 2" in Fs(z) = 2= (1 — %)% is given by
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From this formula we can immediately read off properties (a) and (b): the range of the summation is the
same for n = 2m and n = 2m + 1, and increasing n only increases the number of terms that need to be
subtracted (each of which is positive).

Question 5. Can you find a direct combinatorial proof of assertions (a) and (b)?



