Math 155 (Lecture 7)

September 16, 2011

In this lecture, we describe some applications of the composition formula

$$
F_{S \circ T}(x)=F_{S}\left(F_{T}(x)\right)
$$

proved in the last lecture. We will be particularly interested in the case where $S=S_{\text {set }}$ is the species of finite sets, so that $S[I]=\{*\}$ for every finite set I and therefore $F_{S}(x)=e^{x}$. We will refer to $S \circ T$ as the exponential of the species T and denote it by $\exp (T)$, so that our formula reads

$$
F_{\exp (T)}(x)=e^{F_{T}(x)} .
$$

Example 1. Let S be the species of graphs: that is, $S[I]$ is the set of all graphs with vertex set I. Note that $S[I]$ is just the collection of all subsets of unordered pairs of elements of I, and therefore has cardinality $2^{\binom{I I I}{2} \text {. We conclude that the exponential generating function of } S \text { is given by }}$

$$
F_{S}(x)=\sum_{n \geq 0} \frac{2^{\binom{n}{2}}}{n!} x^{n}=1+x+\frac{2}{2} x^{2}+\frac{8}{6} x^{3}+\frac{64}{24} x^{4}+\cdots .
$$

This function is unlikely to be familiar: the coefficients in the numerator grow faster than the coefficients in the denominator, so the power series does not converge for any nonzero value of x.

Let T be the species of connected graphs: that is, for each finite set $I, T[I]$ is the set of all connected graphs with vertex set I (by convention, we agree that the empty graph is not connected). Every graph with vertex set I can be uniquely decomposed into connected components. It follows that to give a graph with vertex set I, one must give an equivalence relation on I (the relation of "being in the same connected component") and, for each equivalence class, a connected graph with that vertex set. It follows that S is the exponential of the species T : we have an isomorphism of species $S=\exp (T)$ and therefore an equality of generating functions

$$
F_{S}(x)=e^{F_{T}(x)} .
$$

We can use this to solve for $F_{T}(x)$: we get

$$
F_{T}(x)=\log F_{S}(x)=\log \left(1+x+\frac{2}{2} x^{2}+\frac{8}{6} x^{3}+\cdots\right) .
$$

This does not obviously give us a closed form expression for $F_{T}(x)$ (that is, a closed form expression for the number of labelled connected graphs of a fixed size). But it does give us a reasonable approach to computing this number, which is much more efficient than trying to make a direct count.

Example 2. Let S be the species of permutations (so that $S[I]$ is the set of all permutation of I) and let S_{0} be the species of cyclic permutations, so that $S_{0}[I]$ is the set of all permutations of I having only one orbit (by convention, the identity permutation of the empty set is not cyclic: it has zero orbits, rather than one). We already have a formula for the exponential generating function $F_{S}(x)$: it is given by

$$
\sum_{n \geq 0} \frac{n!}{n!} x^{n}=\sum_{n \geq 0} x^{n}=\frac{1}{1-x} .
$$

Every permutation π of a set I determines an equivalence relation on I, given by "being in the same orbit". To specify the permutation π, we must give this equivalence relation together with a cyclic permutation of each equivalence class. We therefore have an isomorphism of species $S \simeq \exp \left(S_{0}\right)$, hence an equality of exponential generating functions

$$
F_{S}(x)=e^{F_{S_{0}}(x)}
$$

It follows that

$$
F_{S_{0}}(x)=\log F_{S}(x)=\log \left(\frac{1}{1-x}\right)=\sum_{n \geq 1} \frac{x^{n}}{n}
$$

From this, we deduce that if I is a finite set of size $n \geq 1$, then $S_{0}[I]$ has $\frac{n!}{n}=(n-1)$! elements. In other words, there are exactly $(n-1)$! cyclic permutations of the set $\{1,2, \ldots, n\}$.

Example 2 is not the best illustration of the power of our method: it is fairly easy to show that there are $(n-1)$! cyclic permutations of the set $\{1,2, \ldots, n\}$ by a direct combinatorial argument (exercise). Here is a much trickier question:

Question 3. How many permutations of the set $\{1, \ldots, n\}$ have odd order? What is the probability that a randomly chosen permutation has odd order?

Let's denote the number of odd order permutations of the set $\{1,2, \ldots, n\}$ by a_{n}.
Example 4. When $n=0$ or $n=1$, the only permutation of the set $\{1, \ldots, n\}$ is the identity, which has odd order. Thus $a_{0}=a_{1}=1$.

The set $\{1,2\}$ has two permutations, one of which has odd order and one of which does not. We therefore have $a_{2}=1$. The set $\{1,2,3\}$ has six permutations. Of these, the permutations of odd order include the identity and the two cyclic permutations, so that $a_{2}=3$.

The odd-order permutations of the set $\{1,2,3,4\}$ include the identity permutation and those permutations which fix a single element and restrict to a 3 -cycle on the remaining elements. Of the latter type, there are four choices for the fixed point and two choices for the cycle. We therefore have $a_{4}=1+2 \times 4=9$.

Odd order permutations of the set $\{1,2,3,4,5\}$ come in three types: cyclic permutations (of which there are $(5-1)!=24$), permutations with two fixed points and a three-cycle (of which there are $2\binom{5}{2}=20$), and the identity permutation. It follows that $a_{5}=24+20+1=45$.

It is a bit more instructive to list the probabilities $\frac{a_{n}}{n!}$: these are given by $1,1, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{3}{8}, \ldots$ Here we might notice two patterns:
(a) The sequence of probabilities $\frac{a_{n}}{n!}$ is non-increasing.
(b) We have $\frac{a_{2 n}}{(2 n)!}=\frac{a_{2 n+1}}{(2 n+1)!}$.

We will use generating functions to show that both of these patterns persist. Let S be denote the species of odd-order permutations: that is, $S[I]$ is the set of all permutations of I having odd order, for each finite set I. Note that a permutation of I has odd order if and only if of its cycles has odd length. We may therefore write $S=\exp \left(S_{0}\right)$, where S_{0} is the species of odd cycles: that is,

$$
S_{0}[I]= \begin{cases}\{\text { cyclic permutations of I }\} & \text { if }|I|=2 k+1 \\ \emptyset & \text { if }|I|=2 k\end{cases}
$$

We have already seen that a set of size $2 k+1$ has exactly $2 k$! cyclic permutations. It follows that the exponential generating function of $F_{S_{0}}(x)$ is given by

$$
\sum_{k \geq 0} \frac{2 k!}{(2 k+1)!} x^{2 k+1}=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots
$$

To obtain a closed formula for this, we take as our starting point the equality

$$
\log \frac{1}{1-x}=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots
$$

Changing the sign of x, we also have

$$
\log \frac{1}{1+x}=-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{4}-\cdots
$$

Subtracting the second equation from the first, we get

$$
\log \frac{1}{1-x}-\log \frac{1}{1+x}=2 F_{S_{0}}(x)
$$

so that $F_{S_{0}}(x)=\frac{1}{2}\left(\log \frac{1}{1-x}+\log (1+x)\right)=\log \sqrt{\frac{1+x}{1-x}}$. It follows that

$$
F_{S}(x)=e^{F_{S_{0}}(x)}=\sqrt{\frac{1+x}{1-x}}=\frac{\sqrt{1-x^{2}}}{1-x}
$$

To obtain a closed form expression for the numbers a_{n}, it is convenient to use the binomial formula

$$
\begin{aligned}
\left(1-x^{2}\right)^{1 / 2} & =\sum_{k \geq 0}\binom{\frac{1}{2}}{k}\left(-x^{2}\right)^{k} \\
& =\sum_{k \geq 0} \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-k+1\right)}{k!}(-1)^{k} x^{2 k}
\end{aligned}
$$

It follows that the coefficient $\frac{a_{n}}{n!}$ of x^{n} in $F_{S}(x)=\frac{1}{1-x}\left(1-x^{2}\right)^{\frac{1}{2}}$ is given by

$$
\begin{aligned}
\sum_{0 \leq k \leq \frac{n}{2}} \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-k+1\right)}{k!}(-1)^{k} & =1-\sum_{1 \leq k \leq \frac{n}{2}} \frac{(2 k-3)(2 k-5) \cdots(1)}{k!2^{k}} \\
& =1-\sum_{1 \leq k \leq \frac{n}{2}} \frac{(2 k-3)!}{k!(k-2)!2^{2 k-2}}
\end{aligned}
$$

From this formula we can immediately read off properties (a) and (b) : the range of the summation is the same for $n=2 m$ and $n=2 m+1$, and increasing n only increases the number of terms that need to be subtracted (each of which is positive).

Question 5. Can you find a direct combinatorial proof of assertions (a) and (b)?

