
Math 155 (Lecture 4)

September 8, 2011

Let us continue our analysis of the problem posed at the end of the previous lecture. For each n ≥ 0,
we let Dn denote the number of derangements of the set {1, . . . , n}. In the last lecture, we determined the
exponential generating function

F (x) =
∑
n≥0

Dn

n!
xn.

It is given by F (x) = e−x

1−x .
Writing this out in more detail, we get

F (x) = (
∑
p≥0

xp)(
∑
q≥0

(−1)qxq

q!
).

Taking the coefficient of xn on both sides, we get

Dn

n!
=

∑
p+q=n

(−1)q

q!
= 1− 1

1!
+

1

2!
− 1

6!
+ · · ·+ (−1)n

n!
.

Clearing denominators, we get

Dn =
∑

0≤q≤n

(−1)qn!

q!
= n!− n! +

n!

2!
− n!

3!
+ · · ·+ (−1)n.

Example 1. Our formula checks out for small values of n: we have

D0 = 0! = 1 D1 = 1!− 1! = 0

D2 = 2!− 2! +
2!

2!
= 1 D3 = 3!− 3! +

3!

2!
− 3!

3!
= 6− 6 + 3− 1 = 2.

This gives us the desired formula for the number of derangements, but gives an even nicer answer to our
second formulation of the question: what is the probability that a given permutation is a derangement? The
answer is given by

Dn

n!
=

∑
0≤q≤n

(−1)q

q!
= 1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!

Note that this expression is the beginning of the power series expansion for the exponential function ex,
evaluated at x = −1. We therefore have

Dn

n!
+
∑
q>n

(−1)q

q!
=
∑
q≥0

(−1)q

q!
=

1

e
.
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The second summand here is very small: it is bounded in absolute value by 1
(n+1) !. We conclude that Dn

n! is

very close to the real number 1
e . In fact, this even gives an approximate formula for Dn itself: we see that

|Dn −
n!

e
| < n!

(n + 1)!
=

1

n + 1
.

For n ≥ 1, this means that Dn is the nearest integer to the expression n!
e .

Let us call attention to the following point: in order to get our nice formula for F (x), it was essential to
add the extra factor of 1

n! on the coefficient of xn. The power series

G(x) =
∑
n≥0

Dnx
n

is not going to be any recognizable function: for example, it does not converge for any nonzero value of x
(because the sequence of coefficients Dn ≈ n!

e grows faster than any exponential function of n). This raises
a question: how should one know to think about the exponential generating function F , rather than the
ordinary generating function G? (Put another way: why do the probabilities Dn

n! behave more nicely than
the integers Dn themselves?) A general rule of thumb is that exponential generating functions are useful for
counting the number of solutions to some combinatorial problem involving a labelled set of size n.

Example 2. Let n = 2m be an even integer. Let us say that a labelled matching of the set {1, . . . , n} is
a partition of this set into a sequence of m subsets S1, . . . , Sm, each of size 2 (here the order of the sets Si

matters). Let Mn denote the number of labelled matchings of the set {1, . . . , n}.
By convention, we will agree that Mn = 0 if n is odd. If n = 2m is even, then there are

(
n
2

)
= n(n−1)

2

choices for the subset S1. Once S1 has been chosen, there are
(
n−2
2

)
= (n−2)(n−3)

2 choices for the subset S2,
and so forth. The total number of labelled machings is then given by

Mn =
n(n− 1)

2

(n− 2)(n− 3)

2
· · · (2)(1)

2
=

n!

2
n
2
.

If we try to organize these numbers into an ordinary generating function, we obtain the power series

∑
n≥0

{
n!

2
n
2
xn n even

0 n odd,

which is not convergent for any positive value of x (and therefore is not likely to be a power series which is
familiar from calculus). However, the exponential generating function∑

n≥0

Mn

n!
xn

is easy to describe: it is given by

1 +
x2

2
+

x4

4
+

x6

8
+ · · · = 1

1− x2

2

=
2

2− x2
.

One of the reasons that generating functions are so useful is that natural operations on power series
(such as addition and multiplication) often have combinatorial interpretations. Let us consider the case of
multiplication. Suppose we are given two sequences of integers {Ap}p≥0 and {Bq}q≥0, and consider the
exponential generating functions

F (x) =
∑
p≥0

Ap

p!
xp G(x) =

∑
q≥0

Bq

q!
xq,
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and let F (x)G(x) =
∑

n≥0
Cn

n! x
n. We have

F (x)G(x) = (
∑
p≥0

Ap

p!
xp)(

∑
q≥0

Bq

q!
xq)

=
∑
p,q≥0

ApBq

p!q!
xp+q

=
∑
n≥0

(
∑

p+q=n

ApBq

p!q!
)xn

so that

Cn = n!
∑

p+q=n

ApBq

p!q!
=

∑
0≤p≤n

(
n

p

)
ApBn−p.

Now suppose that the integers Ap are given by the solution to some counting problem: Ap is the number
of ways to endow a set of size p with some kind of decoration. Similarly, supppose that Bq is the number of
ways to endow a set of size q with some other kind of decoration. Then Cn has the following interpretation:
it is the number of ways to partition a set of size n into two pieces, to endow the first piece with the first
type of decoration, and to endow the second piece with the second type of decoration.

Example 3. Suppose that Cn is the number of ways to color the set {1, . . . , n} using c+ c′ colors. We have
already encountered this number in the first lecture: it is (c + c′)n. Every coloring determines a partition
of the set {1, . . . , n} into two parts: a part where we have used the first c colors, and a part where we have
used the remaining c′ colors. If we let Ap denote the number of ways to color a set of size p with c colors
and Bq the number of ways to color a set of size q with c′ colors, the same analysis gives

Ap = cp Bq = c′q.

In this case, we recover the binomial formula

(c + c′)n = Cn =
∑

0≤p≤n

(
n

p

)
ApBn−p =

∑
0≤p≤n

(
n

p

)
cpc′n−p.

At the level of generating functions, we have∑ Ap

p!
xp = ecx

∑ Bq

q!
xq = ec

′x

∑ Cn

n!
xn = e(c+c′)x,

and we recover the usual formula
e(c+c′)x = ecxec

′x.

Let’s apply this to a more interesting problem.

Question 4. How many ways can the set {1, . . . , n} be partitioned into nonempty subsets?

The answer to Question 4 is called the Bell number bn. Note that Question 4 is similar to a question
raised in the second lecture, in the definition of the Stirling numbers

{
n
k

}
. The only difference is that we

have not specified the number k ahead of time. We therefore have

bn =
∑
k

{
n

k

}
.
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Example 5. The first few Bell numbers are easy to compute by hand. We have b0 = 1, b1 = 1, b2 = 2,
b3 = 5, b4 = 15.

Let’s work out the exponential generating function F (x) =
∑

n≥0
bn
n! x

n. for the Bell numbers, using the
multiplication principle introduced above. As a first step, let’s isolate a recurrence relation satisfied by the
Bell numbers. Suppose the integers b0, b1, . . . , bn are known. How can we compute bn+1 without explicitly
listing all the partitions of the set {1, . . . , n + 1}? Note that every partition of {1, . . . , n + 1} determines a
decomposition of the set {1, . . . , n} into two parts those elements which are grouped with n + 1, and those
elements which are not. The first of these can be an arbitrary subset S ⊆ {1, . . . , n}, having some size
k. To recover our original partition, we need to know the set S together with the resulting partition of
{1, . . . , n} − S, and there are bn−k choices for the latter. This analysis gives

bn+1 =
∑

0≤k≤n

(
n

k

)
bn−k.

Multiplying by xn

n! and summing over n, we get∑
n≥0

bn+1

n!
xn =

∑
p≥0

1

p!
xp
∑
q≥0

bq
q!
xq = exF (x).

Note that the left hand side is just given by the derivative of the function F (x). We deduce that F satisfies
the differential equation

F ′(x) = exF (x).

This differential equation is just another way of writing our recurrence relation above. Consequently, we see
that the solution to this equation is uniquely determined provided that the constant term F (0) = b0 = 1 has
been specified. This solution is given by

F (x) = ee
x−1 =

1

e
ee

x

We have a convergent power series expansion

ee
x

=
∑
m≥0

1

m!
(ex)m

=
∑
m≥0

1

m!
emx

=
∑

m≥0,n≥0

1

m!

1

n!
(mx)n.

It follows that the coefficient of xn in ee
x

is given by

1

n!

∑
m≥0

mn

m!
.

We have proven:

Theorem 6 (Dobinski’s formula). The Bell numbers are given by

bn =
1

e

∑
m≥0

mn

n!
.

4


