# Math 155 (Lecture 33) 

November 27, 2011

Definition 1. Let $G$ be a graph with vertex set $V$. We say that $G$ is bipartite if there exists a decomposition $V=V_{0} \cup V_{1}$ into disjoint subsets, such that every edge consists of a vertex from $V_{0}$ together with a vertex from $V_{1}$. (That is, neither $V_{0}$ nor $V_{1}$ contains a pair of adjacent vertices.)

Remark 2. A disjoint union of bipartite graphs is bipartite.
Proposition 3. Let $G$ be a graph. The following conditions are equivalent:
(1) The graph $G$ is bipartite.
(2) The graph $G$ contains no cycles of odd length.

Proof. Suppose first that $G$ is bipartite, and let $v_{0}, v_{1}, \ldots, v_{n}=v_{0}$ be a cycle of $G$. Since $G$ is bipartite, its vertex set $V$ can be partitioned into subsets $V_{0}$ and $V_{1}$ as in Definition 1. We may assume without loss of generality that $v_{0} \in V_{0}$. Then $v_{1}$ is adjacent to $v_{0}$, so that $v_{1} \in V_{1}$. The same argument shows that $v_{2} \in V_{0}$, $v_{3} \in V_{1}$, and so forth. Since $v_{n}=v_{0} \in V_{0}$, we conclude that $n$ is even.

Now suppose that condition (2) is satisfied. We wish to show that $G$ is bipartite. Since the collection of bipartite graphs is closed under disjoint unions (Remark 2), we may suppose also that $G$ is connected. Fix a vertex $v \in V$. For each $w \in V$, let $d(v, w)$ denote the distance from $v$ to $w$ : that is, the length of the shortest path from $v$ to $w$. Let $V_{0}=\{w \in V: d(v, w)$ is even $\}$ and $V_{1}=\{w \in V: d(v, w)$ is odd $\}$. We claim that the decomposition $V=V_{0} \cup V_{1}$ satisfies the requirements of Definition 1. Suppose otherwise: then there exists a pair of adjacent vertices $w, w^{\prime} \in V$ such that either $w, w^{\prime} \in V_{0}$ or $w, w^{\prime} \in V_{1}$. Let us assume that $w, w^{\prime} \in V_{0}$ (the other case can be handled in a similar way). Then there exists a path $v=v_{0}, v_{1}, \ldots, v_{m}=w$ of even length. Similarly, there exists a path $v=v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{n}^{\prime}=w^{\prime}$ of even length. Then the cycle $v=v_{0}, v_{1}, \ldots, v_{m}=w, w^{\prime}=v_{n}^{\prime}, v_{n-1}^{\prime}, \ldots, v_{0}^{\prime}=v$ has length $m+n+1$ which is an odd number, contradicting assumption (2).

Now suppose that $G$ is a bipartite graph with vertex set $V$, and that we are given a decomposition $V=V_{0} \cup V_{1}$ satisfying the requirements of Definition 1 . A matching of $V_{0}$ to $V_{1}$ is an injective map $f: V_{0} \rightarrow V_{1}$ such that $f(v)$ is adjacent to $v$, for each $v \in V_{0}$.

Question 4 (Marriage Problem). Given a bipartite graph $G$ as above, when does there exists a matching $f: V_{0} \rightarrow V_{1}$ ?

Remark 5. The terminology of Question 4 is motivated as follows: we imagine that $V_{0}$ is the set of men in some village and $V_{1}$ the set of women in some village, and that a pair of vertices $v \in V_{0}, w \in V_{1}$ are adjacent if they are willing to marry. Then Question 4 asks if some matchmaker could arrange a marriage for every man in the village, with no two men marrying the same woman.

Remark 6. As formulated in Question 4, the marriage problem is not symmetric. However, if $V_{0}$ and $V_{1}$ have the same size, then any injection from $V_{0}$ to $V_{1}$ is a bijection, whose inverse is an injection from $V_{1}$ to $V_{0}$. Thus, in this special case, the problem is symmetric.

There are some situations which one can obviously not solve the marriage problem of Question 4:

Example 7. If $\left|V_{0}\right|>\left|V_{1}\right|$, then there cannot exist any map $f: V_{0} \rightarrow V_{1}$. It follows that there cannot be a matching between $V_{0}$ and $V_{1}$.

Example 8. If there is some vertex $v \in V_{0}$ which is not adjacent to any vertex in $V_{1}$, then there cannot be a matching from $V_{0}$ to $V_{1}$.

We can simultaneously rule out the bad situations described in Examples 7 and 8 with the following assumption:
(*) For every subset $S \subseteq V_{0}$, let $S^{+} \subseteq V_{1}$ be the set $\left\{v \in V_{1}: v\right.$ is adjacent to some $\left.w \in S\right\}$. Then $\left|S^{+}\right| \geq|S|$.

When $S$ has a single element, this says that every vertex of $V_{0}$ is adjacent to some vertex of $V_{1}$. When $S=V_{0}$, it guarantees that $\left|V_{1}\right| \geq\left|V_{0}\right|$.

Theorem 9 (Hall's Marriage Theorem). Let $G$ be a bipartite graph with vertex set $V=V_{0} \cup V_{1}$ as above. Then there is a matching $f: V_{0} \rightarrow V_{1}$ if and only if condition $(*)$ is satisfied.

Proof. We first prove the "only if" direction. Suppose there is a matching $f: V_{0} \rightarrow V_{1}$, and let $S \subseteq V_{0}$. Then $f(S) \subseteq S^{+}$, so that $\left|S^{+}\right| \geq|f(S)|=|S|$.

The hard part is to prove the "if" direction. We will prove, using induction on the integer $\left|V_{0}\right|$, that condition $(*)$ implies the existence of a matching $V_{0} \rightarrow V_{1}$. We consider two cases:
(a) Suppose that there exists a nonempty proper subset $S \subset V_{0}$ such that $\left|S^{+}\right|=|S|$. Applying the inductive hypothesis, we can find a matching $f: S \rightarrow S^{+}$. Let $G^{\prime}$ be the graph obtained from $G$ by removing $S$ and $f(S)$, so that the set of vertices of $G^{\prime}$ can be decomposed into subsets $W_{0}=V_{0}-S$ and $W_{1}=V_{1}-f(S)$. For each subset $T \subseteq W_{0}$, let $T^{+} \subseteq W_{1}$ be defined as in $(*)$. Then $(S \cup T)^{+} \subseteq$ $T^{+} \cup S^{+}=T^{+} \cup f(S)$, so that $\left|T^{+}\right|=\left|(S \cup T)^{+}\right|-|f(S)| \geq|S \cup T|-|S|=|T|$. It follows that the graph $G^{\prime}$ satisfies condition $(*)$, so that the inductive hypothesis guarantees the existence of a matching $g: W_{0} \rightarrow W_{1}$. Together, the maps $f$ and $g$ determine a matching $V_{0} \rightarrow V_{1}$.
(b) Suppose that for every nonempty proper subset $S \subseteq V_{0}$, we have $\left|S^{+}\right|>|S|$. If $V_{0}$ is empty, there is nothing to prove. Otherwise, we can choose a vertex $v \in V_{0}$. Since $\{v\}^{+}$is nonempty, we can choose a vertex $w \in V_{1}$ adjacent to $v$. Let $G^{\prime}$ be the graph obtained from $G$ by removing the vertices $v$ and $w$, so that the vertices of $G^{\prime}$ can be decomposed into subsets $W_{0}=V_{0}-\{v\}$ and $W_{1}=V_{1}-\{w\}$. For each nonempty subset $S \subseteq W_{1}$, the set $S^{++}=\left\{u \in W_{1}: u\right.$ is adjacent to some $\left.t \in T\right\}$ coincides with $S^{+}-\{w\}$, where $S^{+}$is computed in the graph $G$. Since $S$ is a proper subset of $V_{0}$, we have $\left|S^{++}\right| \geq\left|S^{+}\right|-1>|S|-1$, so that $\left|S^{++}\right| \geq|S|$. Thus the graph $G^{\prime}$ satisfies (*), so the inductive hypothesis gives us a matching $g: W_{0} \rightarrow W_{1}$. This extends to a matching $f: V_{0} \rightarrow V_{1}$ by setting $f(v)=w$.

Here is a reformulation of the marriage theorem which does not mention graphs:
Theorem 10. Let $X$ be a finite set, and suppose we are given subsets $Y_{1}, Y_{2}, \ldots, Y_{m} \subseteq X$. Assume that:
$\left(*^{\prime}\right)$ For every subset $S \subseteq\{1, \ldots, m\}$, the set $\bigcup_{i \in S} Y_{i}$ has cardinality at least $|S|$.
Then there exists a sequence of elements $y_{1} \in Y_{1}, y_{2} \in Y_{2}, \ldots$, with $y_{i} \neq y_{j}$ for $i \neq j$.
Proof. Form a bipartite graph $G$ with vertex set $X \cup\{1, \ldots, m\}$, where an element $x \in X$ is adjacent to $i \in\{1, \ldots, m\}$ if $x \in Y_{i}$. Condition $\left(*^{\prime}\right)$ implies that $G$ satisfies hypothesis $(*)$ of Hall's marriage theorem, so that there exists a matching $f:\{1, \ldots, m\} \rightarrow X$. Now set $y_{1}=f(1), y_{2}=f(2)$, and so forth.

In the symmetric case $\left|V_{0}\right|=\left|V_{1}\right|$, Question 4 can be regarded as a special case of a more general question.

Definition 11. Let $G$ be a graph. A matching of $G$ is a set $M$ of edges of $G$, no two of which share a vertex. We say that a matching is perfect if every vertex of $G$ belongs to some edge of $M$.

Question 12. Given a graph $G$, when does it have a perfect matching?
An answer is provided by the following result:
Theorem 13 (Tutte). Let $G$ be a finite graph with vertex set $V$. Then $G$ has a perfect matching if and only if the following condition is satisfied, for every subset $S \subseteq V$ :
$(\star)$ Let $G^{\prime}$ be the graph obtained from $G$ by removing the set $S$. Then the number connected components of $G^{\prime}$ of odd size is $\leq|S|$.

Example 14. When $S=\emptyset$, condition $(\star)$ asserts that $G$ has no components with an odd number of vertices. In particular, this implies that the number of vertices of $G$ is even.

To prove the necessity of condition ( $\star$ ), let us suppose that $G$ has a perfect matching $M$. Let $S$ be a set of vertices of $G$ and let $G^{\prime}$ be as in ( $\star$ ). If $G^{\prime \prime}$ is a connected component of $G^{\prime}$ with an odd number of vertices, then $G^{\prime}$ does not admit a perfect matching. Consequently, there exists at least one edge belonging to $M$ which connects a vertex of $G^{\prime \prime}$ with one of the vertices of $S$. The vertices of $S$ which arise in this way are all distinct (since two edges of $M$ cannot share of a vertex). Consequently, the number of odd components of $G^{\prime}$ must be $\leq|S|$.

We will prove the sufficiency of condition $(\star)$ in the next lecture.

