
Math 155 (Lecture 33)

November 27, 2011

Definition 1. Let G be a graph with vertex set V . We say that G is bipartite if there exists a decomposition
V = V0 ∪ V1 into disjoint subsets, such that every edge consists of a vertex from V0 together with a vertex
from V1. (That is, neither V0 nor V1 contains a pair of adjacent vertices.)

Remark 2. A disjoint union of bipartite graphs is bipartite.

Proposition 3. Let G be a graph. The following conditions are equivalent:

(1) The graph G is bipartite.

(2) The graph G contains no cycles of odd length.

Proof. Suppose first that G is bipartite, and let v0, v1, . . . , vn = v0 be a cycle of G. Since G is bipartite, its
vertex set V can be partitioned into subsets V0 and V1 as in Definition 1. We may assume without loss of
generality that v0 ∈ V0. Then v1 is adjacent to v0, so that v1 ∈ V1. The same argument shows that v2 ∈ V0,
v3 ∈ V1, and so forth. Since vn = v0 ∈ V0, we conclude that n is even.

Now suppose that condition (2) is satisfied. We wish to show that G is bipartite. Since the collection
of bipartite graphs is closed under disjoint unions (Remark 2), we may suppose also that G is connected.
Fix a vertex v ∈ V . For each w ∈ V , let d(v, w) denote the distance from v to w: that is, the length of
the shortest path from v to w. Let V0 = {w ∈ V : d(v, w) is even } and V1 = {w ∈ V : d(v, w) is odd }.
We claim that the decomposition V = V0 ∪ V1 satisfies the requirements of Definition 1. Suppose otherwise:
then there exists a pair of adjacent vertices w,w′ ∈ V such that either w,w′ ∈ V0 or w,w′ ∈ V1. Let
us assume that w,w′ ∈ V0 (the other case can be handled in a similar way). Then there exists a path
v = v0, v1, . . . , vm = w of even length. Similarly, there exists a path v = v′0, v

′
1, . . . , v

′
n = w′ of even length.

Then the cycle v = v0, v1, . . . , vm = w,w′ = v′n, v
′
n−1, . . . , v

′
0 = v has length m + n + 1 which is an odd

number, contradicting assumption (2).

Now suppose that G is a bipartite graph with vertex set V , and that we are given a decomposition
V = V0 ∪ V1 satisfying the requirements of Definition 1. A matching of V0 to V1 is an injective map
f : V0 → V1 such that f(v) is adjacent to v, for each v ∈ V0.

Question 4 (Marriage Problem). Given a bipartite graph G as above, when does there exists a matching
f : V0 → V1?

Remark 5. The terminology of Question 4 is motivated as follows: we imagine that V0 is the set of men in
some village and V1 the set of women in some village, and that a pair of vertices v ∈ V0, w ∈ V1 are adjacent
if they are willing to marry. Then Question 4 asks if some matchmaker could arrange a marriage for every
man in the village, with no two men marrying the same woman.

Remark 6. As formulated in Question 4, the marriage problem is not symmetric. However, if V0 and V1

have the same size, then any injection from V0 to V1 is a bijection, whose inverse is an injection from V1 to
V0. Thus, in this special case, the problem is symmetric.

There are some situations which one can obviously not solve the marriage problem of Question 4:
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Example 7. If |V0| > |V1|, then there cannot exist any map f : V0 → V1. It follows that there cannot be a
matching between V0 and V1.

Example 8. If there is some vertex v ∈ V0 which is not adjacent to any vertex in V1, then there cannot be
a matching from V0 to V1.

We can simultaneously rule out the bad situations described in Examples 7 and 8 with the following
assumption:

(∗) For every subset S ⊆ V0, let S+ ⊆ V1 be the set {v ∈ V1 : v is adjacent to some w ∈ S }. Then
|S+| ≥ |S|.

When S has a single element, this says that every vertex of V0 is adjacent to some vertex of V1. When
S = V0, it guarantees that |V1| ≥ |V0|.

Theorem 9 (Hall’s Marriage Theorem). Let G be a bipartite graph with vertex set V = V0 ∪ V1 as above.
Then there is a matching f : V0 → V1 if and only if condition (∗) is satisfied.

Proof. We first prove the “only if” direction. Suppose there is a matching f : V0 → V1, and let S ⊆ V0.
Then f(S) ⊆ S+, so that |S+| ≥ |f(S)| = |S|.

The hard part is to prove the “if” direction. We will prove, using induction on the integer |V0|, that
condition (∗) implies the existence of a matching V0 → V1. We consider two cases:

(a) Suppose that there exists a nonempty proper subset S ⊂ V0 such that |S+| = |S|. Applying the
inductive hypothesis, we can find a matching f : S → S+. Let G′ be the graph obtained from G by
removing S and f(S), so that the set of vertices of G′ can be decomposed into subsets W0 = V0 − S
and W1 = V1 − f(S). For each subset T ⊆ W0, let T+ ⊆ W1 be defined as in (∗). Then (S ∪ T )+ ⊆
T+ ∪ S+ = T+ ∪ f(S), so that |T+| = |(S ∪ T )+| − |f(S)| ≥ |S ∪ T | − |S| = |T |. It follows that the
graph G′ satisfies condition (∗), so that the inductive hypothesis guarantees the existence of a matching
g : W0 →W1. Together, the maps f and g determine a matching V0 → V1.

(b) Suppose that for every nonempty proper subset S ⊆ V0, we have |S+| > |S|. If V0 is empty, there is
nothing to prove. Otherwise, we can choose a vertex v ∈ V0. Since {v}+ is nonempty, we can choose
a vertex w ∈ V1 adjacent to v. Let G′ be the graph obtained from G by removing the vertices v and
w, so that the vertices of G′ can be decomposed into subsets W0 = V0 − {v} and W1 = V1 − {w}.
For each nonempty subset S ⊆ W1, the set S++ = {u ∈ W1 : u is adjacent to some t ∈ T } coincides
with S+ − {w}, where S+ is computed in the graph G. Since S is a proper subset of V0, we have
|S++| ≥ |S+| − 1 > |S| − 1, so that |S++| ≥ |S|. Thus the graph G′ satisfies (∗), so the inductive
hypothesis gives us a matching g : W0 → W1. This extends to a matching f : V0 → V1 by setting
f(v) = w.

Here is a reformulation of the marriage theorem which does not mention graphs:

Theorem 10. Let X be a finite set, and suppose we are given subsets Y1, Y2, . . . , Ym ⊆ X. Assume that:

(∗′) For every subset S ⊆ {1, . . . ,m}, the set
⋃

i∈S Yi has cardinality at least |S|.

Then there exists a sequence of elements y1 ∈ Y1, y2 ∈ Y2, . . ., with yi 6= yj for i 6= j.

Proof. Form a bipartite graph G with vertex set X ∪ {1, . . . ,m}, where an element x ∈ X is adjacent to
i ∈ {1, . . . ,m} if x ∈ Yi. Condition (∗′) implies that G satisfies hypothesis (∗) of Hall’s marriage theorem,
so that there exists a matching f : {1, . . . ,m} → X. Now set y1 = f(1), y2 = f(2), and so forth.

In the symmetric case |V0| = |V1|, Question 4 can be regarded as a special case of a more general question.
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Definition 11. Let G be a graph. A matching of G is a set M of edges of G, no two of which share a vertex.
We say that a matching is perfect if every vertex of G belongs to some edge of M .

Question 12. Given a graph G, when does it have a perfect matching?

An answer is provided by the following result:

Theorem 13 (Tutte). Let G be a finite graph with vertex set V . Then G has a perfect matching if and only
if the following condition is satisfied, for every subset S ⊆ V :

(?) Let G′ be the graph obtained from G by removing the set S. Then the number connected components
of G′ of odd size is ≤ |S|.

Example 14. When S = ∅, condition (?) asserts that G has no components with an odd number of vertices.
In particular, this implies that the number of vertices of G is even.

To prove the necessity of condition (?), let us suppose that G has a perfect matching M . Let S be a set
of vertices of G and let G′ be as in (?). If G′′ is a connected component of G′ with an odd number of vertices,
then G′ does not admit a perfect matching. Consequently, there exists at least one edge belonging to M
which connects a vertex of G′′ with one of the vertices of S. The vertices of S which arise in this way are all
distinct (since two edges of M cannot share of a vertex). Consequently, the number of odd components of
G′ must be ≤ |S|.

We will prove the sufficiency of condition (?) in the next lecture.
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