
Math 155 (Lecture 31)

November 17, 2011

Let Ω be a finite probability space, and suppose we are given a collection of events E1, E2, . . . , Em ⊆ Ω.
In the last lecture, we proved the following result:

Theorem 1 (Lovász Local Lemma). Suppose there is a graph G with vertex set {1, 2, . . . ,m} satisfying the
following condition:

(∗) For each 1 ≤ i ≤ m, if S is a set of vertices of G which are distinct from i and not adjacent to i, then
Ei is independent of the set of events {Ej}j∈S.

Suppose further that we are given real numbers 0 ≤ xi < 1 such that

P (Ei) ≤ xi
∏

(i,j) adjacent

(1− xj).

Then P (E1 ∪ · · · ∪ Em) ≤ 1−
∏

1≤i≤m(1− xi). In particular, we have E1 ∪ · · · ∪ Em 6= Ω.

Corollary 2 (Lovász Local Lemma, Symmetric Version). In the situation of Theorem 1, suppose that the
graph G has valence ≤ d at each vertex (that is, each vertex is adjacent to at most d other vertices). If each
of the events Ei has probability ≤ 1

e(d+1) , then P (E1 ∪ · · · ∪ Em) < 1. Here e denotes Euler’s constant.

Example 3. If G is the complete graph with vertex set {1, 2, . . . ,m}, then condition (∗) is vacuous. In
this graph, every vertex has valence m − 1. Corollary 2 then reads as follows: if each of the events Ei has
probability ≤ 1

em , then P (E1 ∪ · · · ∪ Em) < 1.
In fact, we can do a little bit better. If each Ei has probability < 1

m , then

P (E1 ∪ · · · ∪ Em) ≤
∑

1≤i≤m

P (Ei) <
m

m
= 1.

However, this is only a slight improvement (a constant factor of 1
e ). In other words, when we have no

information about the independence of our events, the local lemma reproduces roughly the same information
obtained from the naive estimates P (E ∪ E′) ≤ P (E) + P (E′).

To get a feeling for power of the local lemma, let’s try it out in a simple example.

Question 4. Fix an integer n ≥ 0. For what values of k does there exist an injective map {1, 2, . . . , n} →
{1, 2, . . . , k}?

Of course, Question 4 is easy to answer directly: an injective map exists if and only if k ≥ n. Nevertheless,
it is instructive to try “reprove” this using the probabilistic method. Let Ω denote the collection of all maps
from {1, . . . , n} to {1, . . . , k}. We regard Ω as a finite probability space, where each outcome is assigned the
same probability 1

kn .
For every pair of integers 1 ≤ i < j ≤ n, let Ei,j ⊆ Ω be the collection of all maps f : {1, . . . , n} →

{1, . . . , k} satisfying f(i) = f(j). There are
(
n
2

)
of these events, and each occurs with probability P (Ei,j) = 1

k .
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A map is injective if and only if it does not belong to any Ei,j . Consequently, to show that an injective map
exists, it suffices to show that

P (
⋃
Ei,j) < 1.

The naive method gives

P (
⋃
Ei,j) ≤

∑
i,j

P (Ei,j) =

(
n

2

)
1

k
.

Consequently, an injective map will exist provided that
(
n
2

)
1
k < 1: that is, provided that k >

(
n
2

)
.

Now let’s try a probabilistic analysis that takes into account the independence of the events Ei,j . Observe
that the event Ei,j is independent of the set of events {Ei′,j′}i′,j′∈S , where S = {1, . . . , n} − {i, j}. Put
another way, let G be the graph whose vertices are two-element subsets of {1, . . . , n}, where two such subsets
are adjacent if they share an element. Then the graph G satisfies hypothesis (∗) of Theorem 1. Note that
a fixed vertex {i, j} is adjacent to exactly 2(n − 2) other vertices in this graph. Consequently, Corollary 2
tells us that P (

⋃
Ei,j) < 1 provided that P (Ei,j) = 1

k <
1

e(2n−3) . That is, we learn that an injection exists

provided that k > e(2n− 3) (in particular, any k ≥ 6n will do).

Remark 5. To get a feel for the difference between the two estimates, let’s look at what the relevant
probabilities actually are in our situation. The total number of injections from {1, . . . , n} to {1, . . . , k} is
given by k!

(k−n)! = k(k− 1) · · · (k−n+ 1), and the total number of maps is kn. Consequently, the probability

that a given map is an injection is given by the product

p = 1(1− 1

k
)(1− 2

k
) · · · (1− n− 1

k
).

Let’s assume that k ≥ n, so that p is positive. Then we have

log p =
∑

1≤i<n

log(1− i

k
) =

∑
0≤i<n

(− i
k

+
i2

2k2
− i3

3k3
+ · · · ) >

∑
1≤i<n

− i
k

=
−1

k

(
n

2

)
.

It follows that p > e−
(n
2)
k . In particular, if k =

(
n
2

)
, we have p > 1

e . In other words, in the regime where
the “naive” probabilistic proves the existence of an injective map, we actually get much more: a randomly
chosen map from {1, . . . , n} to {1, . . . , k} has a reasonable chance of being injective.

Suppose instead that k = 6n, and (for simplicity) that n is even. If i ≥ n
2 , then 1 − i

k ≤ 1 − 1
12 .

Consequently, the product

p = 1(1− 1

k
)(1− 2

k
) · · · (1− n− 1

k
)

is bounded above by ( 11
12 )n/2. Thus p decays exponentially in n: that is, the probability that a randomly

chosen map {1, . . . , n} → {1, . . . , 6n} is very small.
This example is prototypical: naive probabilistic estimates generally give existence theorems only in the

case where “most” of the objects under considerations have the desired property. But more sophisticated
arguments using the Local Lemma can be used to prove the existence of objects which have “unlikely”
properties.

Problem 6. Give a lower bound for the Ramsey numbers R(3, n).

In Lecture 29, we saw that for each δ > 0, we have R(4, n) > n3/2−δ for n� 0. The same technique can
be applied here to show that for δ > 0, we have R(3, n) > n1−δ for n � 0. But this isn’t any better than
the tautological bound R(3, n) ≥ n: in particular, it is far from the upper bound

R(3, n) ≤
(
n+ 3− 2

2

)
=
n2 + n

2
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coming from the proof of Ramsey’s theorem. Let’s see if we can do better using the Local Lemma.
Let Ω be the collection of all graphs with vertex set {1, . . . , k}. Fix 0 ≤ p ≤ 1, and regard Ω as a

probability space where each graph G occurs with probability pe(1− p)(
k
2)−e, where e is the number of edges

of G (that is, each edge occurs with probability p). For every 3-element subset S ⊆ {1, . . . , k}, let ES denote
the set of graphs containing S as a clique. For each n-element subset T ⊆ {1, . . . , k}, let FT denote the set
of graphs containing T as an anticlique. We would like to show that, if k is too small and p is appropriately
chosen, the probability

P (
⋃
S

ES ∪
⋃
T

FT ) < 1

(so there is a graph with neither a clique of size S nor an anticlique of size T ).
If S is a 3-element subset of {1, . . . , k}, then the event ES is independent of the events {ES′ , FT }, where

S′ and T range over subsets of {1, . . . , k} which do not share an edge with S (meaning they intersect S in at
most one point). Let us therefore think of the collection of events {ES , FT } as forming a graph, where two
events are adjacent if the corresponding subsets of {1, . . . , k} overlap in more than one point. This graph
satisfies condition (∗) of Theorem 1. Let us set p = 1

2k
−1/2, and define real numbers

xES
=

1

6
k−3/2 = y xFT

= k−n = z.

Let us study when these numbers satisfy the requirements of Theorem 1.

• Fix a set S ⊆ {1, . . . , k} of size 3. Then the event ES has probability p−3 = 1
8k
−3/2. Note that S is

adjacent to 3(k− 3) < 3k other events of the type ES′ , and to <
(
k
n

)
events of type FT . Consequently,

it will suffice to verify the inequality

p3 ≤ y(1− y)3k(1− z)(
k
n).

We have

(1− z)(
k
n) ≥ 1−

(
k

n

)
z = 1− 1

kn

(
k

n

)
≥ 1− 1

n!

(1− y)3k ≥ 1− 3ky = 1− 1

2
k−1/2.

The desired inequality will therefore follow if we can show

1

8
k−3/2 ≤ 1

6
k−3/2(1− 1

2
k−1/2)(1− 1

n!
)

or
3

4
≤ (1− 1

2
k−1/2)(1− 1

n!
)

which will be satisfied for all sufficiently large values of k and n.

• Fix a set T ⊆ {1, . . . , k} of size n. Then the event FT has probability (1 − p)(
n
2). Note that FT is

adjacent to ≤ k
(
n
2

)
events of the form ES , and ≤

(
k
n

)
events of the form FT ′ . It will therefore suffice

to verify the inequality

(1− p)(
n
2) ≤ z(1− y)k(

n
2)(1− z)(

k
n).

Taking logarithms and multiplying by −1, we want(
n

2

)
log(

1

1− p
) ≥ k

(
n

2

)
log

1

1− y
+

(
k

n

)
log

1

1− z
− log z.

3



We have seen that the second term is bounded above by log 1
1− 1

n!

, and the third term is given by n log k.

Moreover, we have log 1
1−p = p+ p2 + p3 + · · · > p. It will therefore suffice to check that

p > k log
1

1− y
+

2

n2 + n
log(1 +

1

n!− 1
) +

1

n+ 1
log k.

Note that
1

1− y
= y +

y2

2
+
y3

3
+ · · · = y + y(

y

2
+
y2

3
+ · · · ) ≤ 2y

since y ≤ 1
6 . It will therefore suffice to verify that

p > 2ky +
2

n2 + n
log(1 +

1

n!− 1
) +

log k

n+ 1
.

Let’s now assume that k < ( n
13 logn )2. The difference p− 2ky is given by 1

6k
−1/2 > 13 logn

6n . It therefore
suffices to verify the inequality

13 log n

6n
>

2

n2 + n
log(1 +

1

n!− 1
) +

2 log( n
13 logn )

n
=

2

n2 + n
log(1 +

1

n! + 1
) +

2 log n

n
− 2 log(13 log n)

n

which follows as soon as
log n

6n
>

2

n2 + n
log(1 +

1

n! + 1
).

Any time these inequalities are satisfied, Theorem 1 implies the existence of a graph containing no clique
of size 3 and no anticlique of size n, so that k < R(3, n). We have proven:

Proposition 7. For all sufficiently large values of n, we have R(3, n) ≥ ( n
13 logn )2.

In particular, the function n 7→ R(3, n) grows faster than n2−δ for every positive real number δ. This is

pretty close to optimal, since we know that R(3, n) ≤ n2+n
2 .
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