
Math 155 (Lecture 30)

November 15, 2011

In the last lecture, we described some elementary applications of the probabilistic method. In this lecture,
we will introduce some of the language of probability theory, which will be important for discussing more
sophisticated applications.

Definition 1. A finite probability space consists of a finite set Ω (the set of outcomes) together with, for
each ω ∈ Ω, a nonnegative real number pω, called the probability of ω. We assume that

∑
ω∈Ω pω = 1.

Given a finite probability space Ω, we define an event to be a subset E ⊆ Ω. The probability of an event
E is the real number P (E) =

∑
ω∈E pω.

In what follows, we will fix a finite probability space Ω. In the last lecture, we used the following very
rudimentary fact: if E and E′ are two events, then

P (E ∪ E′) ≤ P (E) + P (E′).

In fact, we can be more precise: we have P (E ∪E′) = P (E) + P (E′)− P (E ∩E′). If E and E′ are disjoint,
this gives P (E ∪ E′) = P (E) + P (E′). Another special case is worthy of mention:

Definition 2. Let E and E′ be events. We say that E and E′ are independent if P (E ∩E′) = P (E)P (E′).

If E and E′ are independent, we have P (E ∪ E′) = P (E) + P (E′)− P (E)P (E′).
It is sometimes helpful to think about independent events in terms of conditional probability. If E and

E′ are events with P (E′) 6= 0, we let P (E|E′) denote the quotient

P (E ∩ E′)

P (E)

We can think of P (E|E′) as the probability that the event E will occur, given that we know that E′ will
occur. Note that E and E′ are independent if and only if P (E|E′) = P (E): that is, if the event E′ tells us
nothing about E.

We will need the following elaboration on Definition 2:

Definition 3. Suppose we are given events E and E′1, E
′
2, . . . , E

′
k ⊆ Ω. We will say that E is independent

of the set of events {E′1, E′2, . . . , E′k} if E is independent of
⋂

i∈S E′i for all subsets S ⊆ {1, . . . , k} (note that
we do not assume that the events E′i are independent of each other).

Example 4. Let Ω be the set of all graphs with vertex set {1, . . . ,m}. In the last lecture, we viewed Ω

as a probability space (where each outcome has probability 2−(m
2 )). For every subset S ⊆ {1, . . . ,m}, we

can consider events ES , E
′
S ⊆ Ω, where ES is the set of graphs containing S as a clique, and E′S is the set

of graphs containing S as an anticlique. Recall that our basic goal was to obtain lower bounds for Ramsey
numbers, by showing that

P (
⋃
|S|=n

ES ∪
⋃
|S|=n

E′S) ≤
∑
|S|=n

P (ES) + P (E′S) < 1

unless m is large compared with n.
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Notation 5. If E is an event, we let Ec = Ω−E denote the complement of E, so that P (Ec) = 1− P (E).

Suppose we are given a set E1, . . . , Ek of mutually independent events (that is, each Ei is independent
of the set of all the other Ej ’s). Then

P (E1 ∪ · · · ∪ Ek) = 1− P (Ec
1 ∩ · · · ∩ Ec

k) = 1− P (Ec
1) · · ·P (Ec

k) = 1− (1− P (E1)) · · · (1− P (Ek)).

In particular, we see that P (E1 ∪ · · · ∪ Ek) is strictly less than one provided that P (Ei) < 1 for each i. We
therefore have two different ways to prove that E1 ∪ · · · ∪ Ek 6= Ω:

(a) We can try to prove that
∑

P (Ei) < 1.

(b) We can try to prove that the events Ei are independent and that P (Ei) < 1 for all i.

For many applications, it is useful to employ a sort of hybrid between these approaches. That is, we
would like to say something about the probability P (E1 ∪ · · · ∪ Ek) in the case where the Ei are “mostly”
independent of one another.

Theorem 6 (Lovász Local Lemma). Suppose we are given a collection of events E1, . . . , Ek and a graph G
with vertex set {1, . . . , k}. Assume that:

(∗) For each 1 ≤ i ≤ k, if S is a set of vertices of G which are not adjacent to i (and does not include i),
then Ei is independent of the set of events {Ej}j∈S.

Suppose further that we are given real numbers 0 ≤ xi < 1 such that

P (Ei) ≤ xi

∏
(i,j) adjacent

(1− xj).

Then P (E1 ∪ · · · ∪ Ek) ≤ 1−
∏

1≤i≤k(1− xi). In particular, we have E1 ∪ · · · ∪ Ek 6= Ω.

Remark 7. We can summarize (∗) more informally by saying that an event Ei is independent of those
events which are not adjacent to Ei in the graph G.

Example 8. Suppose that the events Ei are independent. Then we can take G to be a graph with no edges,
and xi = P (Ei). In this case, we have equality

P (E1 ∪ · · · ∪ Ek) = 1−
∏

(1− xi).

Proof. We first prove the following:

(∗′) If S ⊆ {1, . . . , k} is a set which does not contain some integer i, then

P (Ei|
⋂
j∈S

Ec
j ) ≤ xi

∏
i,j adjacent ,j /∈S

(1− xj).

The proof proceeds by induction on the number of elements of S. Suppose first that S contains no elements
which are adjacent to i. Then Ei is independent of the set {Ej}j∈S . Thus

P (Ei|
⋂
j∈S

Ec
j ) = P (Ei)

≤ xi

∏
i,j adjacent

(1− xj)

≤ xi

∏
i,j adjacent,j /∈S

(1− xj).
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To carry out the inductive step, assume that there exists an index i′ ∈ S which is adjacent to i. Let
S′ = S − {i′}. Then

P (Ei|
⋂
j∈S

Ec
j ) =

P (Ei ∩ Ei′ |
⋂

j∈S′ Ec
j )

P (Ec
i′ |

⋂
j∈S+

Ec
j )

.

By the inductive hypothesis, the numerator is bounded above by

xi(1− xi′)
∏

i,j adjacent ,j /∈S

(1− xj).

It will therefore suffice to show that the denominator is ≥ 1− xi′ . Equivalently, we must show that

P (Ei′ |
⋂
j∈S′

Ec
j ) ≤ xj .

This follows immediately from (∗′), applied to the set S′.
We now compute

P (
⋂

1≤i≤k

Ec
i ) = P (Ec

1)P (Ec
2|Ec

1)P (Ec
3|Ec

1 ∩ Ec
2) · · ·

= (1− P (E1))(1− P (E2|Ec
1)) · · ·

≥ (1− x1)(1− x2) · · · (1− xk).

It follows that that
P (E1 ∪ · · · ∪ Ek) ≤ 1−

∏
1≤i≤k

(1− xi).

Corollary 9 (Lovász Local Lemma, Symmetric Version). In the situation of Theorem 6, suppose that the
graph G has valence ≤ d at each vertex (that is, each vertex is adjacent to at most d other vertices). If each
of the events Ei has probability ≤ 1

e(d+1) , then P (E1 ∪ · · · ∪ Ek) < 1. Here e denotes Euler’s constant.

Proof. We take xi = 1
d+1 for each i. According to Theorem 6, it suffices to show that

P (Ei) ≤ xi

∏
i,j adjacent

(1− xj).

Since P (Ei) ≤ 1
e(d+1) and

1

d + 1
(

d

d + 1
)d ≤ xi

∏
i,j adjacent

(1− xj),

we are reduced to proving that
1

e(d + 1)
≤ 1

d + 1
(

d

d + 1
)d.

Multiplying by d + 1 and taking logarithms, we want

−1 ≤ d log
d

d + 1

or equivalently
1

d
≥ log(1 +

1

d
).

This can be read off immediately from the power series expansion

log(1 +
1

d
) =

1

d
− 1

2d2
+

1

3d3
− · · ·
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Remark 10. Note that the assumption P (Ei) ≤ 1
e(d+1) in Corollary 9 does not depend on the number of

events k: it depends only on the number d, which measures the failure of these events to be independent.
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