Math 155 (Lecture 30)

November 15, 2011

In the last lecture, we described some elementary applications of the probabilistic method. In this lecture, we will introduce some of the language of probability theory, which will be important for discussing more sophisticated applications.

Definition 1. A finite probability space consists of a finite set Ω (the set of outcomes) together with, for each $\omega \in \Omega$, a nonnegative real number p_{ω}, called the probability of ω. We assume that $\sum_{\omega \in \Omega} p_{\omega}=1$.

Given a finite probability space Ω, we define an event to be a subset $E \subseteq \Omega$. The probability of an event E is the real number $P(E)=\sum_{\omega \in E} p_{\omega}$.

In what follows, we will fix a finite probability space Ω. In the last lecture, we used the following very rudimentary fact: if E and E^{\prime} are two events, then

$$
P\left(E \cup E^{\prime}\right) \leq P(E)+P\left(E^{\prime}\right)
$$

In fact, we can be more precise: we have $P\left(E \cup E^{\prime}\right)=P(E)+P\left(E^{\prime}\right)-P\left(E \cap E^{\prime}\right)$. If E and E^{\prime} are disjoint, this gives $P\left(E \cup E^{\prime}\right)=P(E)+P\left(E^{\prime}\right)$. Another special case is worthy of mention:
Definition 2. Let E and E^{\prime} be events. We say that E and E^{\prime} are independent if $P\left(E \cap E^{\prime}\right)=P(E) P\left(E^{\prime}\right)$.
If E and E^{\prime} are independent, we have $P\left(E \cup E^{\prime}\right)=P(E)+P\left(E^{\prime}\right)-P(E) P\left(E^{\prime}\right)$.
It is sometimes helpful to think about independent events in terms of conditional probability. If E and E^{\prime} are events with $P\left(E^{\prime}\right) \neq 0$, we let $P\left(E \mid E^{\prime}\right)$ denote the quotient

$$
\frac{P\left(E \cap E^{\prime}\right)}{P(E)}
$$

We can think of $P\left(E \mid E^{\prime}\right)$ as the probability that the event E will occur, given that we know that E^{\prime} will occur. Note that E and E^{\prime} are independent if and only if $P\left(E \mid E^{\prime}\right)=P(E)$: that is, if the event E^{\prime} tells us nothing about E.

We will need the following elaboration on Definition 2:
Definition 3. Suppose we are given events E and $E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{k}^{\prime} \subseteq \Omega$. We will say that E is independent of the set of events $\left\{E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{k}^{\prime}\right\}$ if E is independent of $\bigcap_{i \in S} E_{i}^{\prime}$ for all subsets $S \subseteq\{1, \ldots, k\}$ (note that we do not assume that the events E_{i}^{\prime} are independent of each other).
Example 4. Let Ω be the set of all graphs with vertex set $\{1, \ldots, m\}$. In the last lecture, we viewed Ω as a probability space (where each outcome has probability $2^{-\binom{m}{2}}$). For every subset $S \subseteq\{1, \ldots, m\}$, we can consider events $E_{S}, E_{S}^{\prime} \subseteq \Omega$, where E_{S} is the set of graphs containing S as a clique, and E_{S}^{\prime} is the set of graphs containing S as an anticlique. Recall that our basic goal was to obtain lower bounds for Ramsey numbers, by showing that

$$
P\left(\bigcup_{|S|=n} E_{S} \cup \bigcup_{|S|=n} E_{S}^{\prime}\right) \leq \sum_{|S|=n} P\left(E_{S}\right)+P\left(E_{S}^{\prime}\right)<1
$$

unless m is large compared with n.

Notation 5. If E is an event, we let $E^{c}=\Omega-E$ denote the complement of E, so that $P\left(E^{c}\right)=1-P(E)$.
Suppose we are given a set E_{1}, \ldots, E_{k} of mutually independent events (that is, each E_{i} is independent of the set of all the other E_{j} 's). Then

$$
P\left(E_{1} \cup \cdots \cup E_{k}\right)=1-P\left(E_{1}^{c} \cap \cdots \cap E_{k}^{c}\right)=1-P\left(E_{1}^{c}\right) \cdots P\left(E_{k}^{c}\right)=1-\left(1-P\left(E_{1}\right)\right) \cdots\left(1-P\left(E_{k}\right)\right)
$$

In particular, we see that $P\left(E_{1} \cup \cdots \cup E_{k}\right)$ is strictly less than one provided that $P\left(E_{i}\right)<1$ for each i. We therefore have two different ways to prove that $E_{1} \cup \cdots \cup E_{k} \neq \Omega$:
(a) We can try to prove that $\sum P\left(E_{i}\right)<1$.
(b) We can try to prove that the events E_{i} are independent and that $P\left(E_{i}\right)<1$ for all i.

For many applications, it is useful to employ a sort of hybrid between these approaches. That is, we would like to say something about the probability $P\left(E_{1} \cup \cdots \cup E_{k}\right)$ in the case where the E_{i} are "mostly" independent of one another.

Theorem 6 (Lovász Local Lemma). Suppose we are given a collection of events E_{1}, \ldots, E_{k} and a graph G with vertex set $\{1, \ldots, k\}$. Assume that:
(*) For each $1 \leq i \leq k$, if S is a set of vertices of G which are not adjacent to i (and does not include i), then E_{i} is independent of the set of events $\left\{E_{j}\right\}_{j \in S}$.

Suppose further that we are given real numbers $0 \leq x_{i}<1$ such that

$$
P\left(E_{i}\right) \leq x_{i} \prod_{(i, j) \text { adjacent }}\left(1-x_{j}\right)
$$

Then $P\left(E_{1} \cup \cdots \cup E_{k}\right) \leq 1-\prod_{1 \leq i \leq k}\left(1-x_{i}\right)$. In particular, we have $E_{1} \cup \cdots \cup E_{k} \neq \Omega$.
Remark 7. We can summarize $(*)$ more informally by saying that an event E_{i} is independent of those events which are not adjacent to E_{i} in the graph G.

Example 8. Suppose that the events E_{i} are independent. Then we can take G to be a graph with no edges, and $x_{i}=P\left(E_{i}\right)$. In this case, we have equality

$$
P\left(E_{1} \cup \cdots \cup E_{k}\right)=1-\prod\left(1-x_{i}\right)
$$

Proof. We first prove the following:
$\left(*^{\prime}\right)$ If $S \subseteq\{1, \ldots, k\}$ is a set which does not contain some integer i, then

$$
P\left(E_{i} \mid \bigcap_{j \in S} E_{j}^{c}\right) \leq x_{i} \prod_{i, j \text { adjacent }, j \notin S}\left(1-x_{j}\right)
$$

The proof proceeds by induction on the number of elements of S. Suppose first that S contains no elements which are adjacent to i. Then E_{i} is independent of the set $\left\{E_{j}\right\}_{j \in S}$. Thus

$$
\begin{aligned}
P\left(E_{i} \mid \bigcap_{j \in S} E_{j}^{c}\right) & =P\left(E_{i}\right) \\
& \leq x_{i} \prod_{i, j \text { adjacent }}\left(1-x_{j}\right) \\
& \leq x_{i} \prod_{i, j \text { adjacent }, j \notin S}\left(1-x_{j}\right)
\end{aligned}
$$

To carry out the inductive step, assume that there exists an index $i^{\prime} \in S$ which is adjacent to i. Let $S^{\prime}=S-\left\{i^{\prime}\right\}$. Then

$$
P\left(E_{i} \mid \bigcap_{j \in S} E_{j}^{c}\right)=\frac{P\left(E_{i} \cap E_{i^{\prime}} \bigcap_{j \in S^{\prime}} E_{j}^{c}\right)}{P\left(E_{i^{\prime}}^{c} \bigcap_{j \in S_{+}} E_{j}^{c}\right)} .
$$

By the inductive hypothesis, the numerator is bounded above by

$$
x_{i}\left(1-x_{i^{\prime}}\right) \prod_{i, j \text { adjaceent }, j \notin S}\left(1-x_{j}\right) .
$$

It will therefore suffice to show that the denominator is $\geq 1-x_{i^{\prime}}$. Equivalently, we must show that

$$
P\left(E_{i^{\prime}} \mid \bigcap_{j \in S^{\prime}} E_{j}^{c}\right) \leq x_{j} .
$$

This follows immediately from ($*^{\prime}$), applied to the set S^{\prime}.
We now compute

$$
\begin{aligned}
P\left(\bigcap_{1 \leq i \leq k} E_{i}^{c}\right) & =P\left(E_{1}^{c}\right) P\left(E_{2}^{c} \mid E_{1}^{c}\right) P\left(E_{3}^{c} \mid E_{1}^{c} \cap E_{2}^{c}\right) \cdots \\
& =\left(1-P\left(E_{1}\right)\right)\left(1-P\left(E_{2} \mid E_{1}^{c}\right)\right) \cdots \\
& \geq\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{k}\right)
\end{aligned}
$$

It follows that that

$$
P\left(E_{1} \cup \cdots \cup E_{k}\right) \leq 1-\prod_{1 \leq i \leq k}\left(1-x_{i}\right) .
$$

Corollary 9 (Lovász Local Lemma, Symmetric Version). In the situation of Theorem 6, suppose that the graph G has valence $\leq d$ at each vertex (that is, each vertex is adjacent to at most d other vertices). If each of the events E_{i} has probability $\leq \frac{1}{e(d+1)}$, then $P\left(E_{1} \cup \cdots \cup E_{k}\right)<1$. Here e denotes Euler's constant.
Proof. We take $x_{i}=\frac{1}{d+1}$ for each i. According to Theorem 6, it suffices to show that

$$
P\left(E_{i}\right) \leq x_{i} \prod_{i, j \text { adjacent }}\left(1-x_{j}\right)
$$

Since $P\left(E_{i}\right) \leq \frac{1}{e(d+1)}$ and

$$
\frac{1}{d+1}\left(\frac{d}{d+1}\right)^{d} \leq x_{i} \prod_{i, j} \text { adjacent }\left(1-x_{j}\right),
$$

we are reduced to proving that

$$
\frac{1}{e(d+1)} \leq \frac{1}{d+1}\left(\frac{d}{d+1}\right)^{d} .
$$

Multiplying by $d+1$ and taking logarithms, we want

$$
-1 \leq d \log \frac{d}{d+1}
$$

or equivalently

$$
\frac{1}{d} \geq \log \left(1+\frac{1}{d}\right)
$$

This can be read off immediately from the power series expansion

$$
\log \left(1+\frac{1}{d}\right)=\frac{1}{d}-\frac{1}{2 d^{2}}+\frac{1}{3 d^{3}}-\cdots
$$

Remark 10. Note that the assumption $P\left(E_{i}\right) \leq \frac{1}{e(d+1)}$ in Corollary 9 does not depend on the number of events k : it depends only on the number d, which measures the failure of these events to be independent.

