
Math 155 (Lecture 3)

September 8, 2011

In this lecture, we’ll consider the answer to one of the most basic counting problems in combinatorics.

Question 1. How many ways are there to choose a k-element subset of the set {1, 2, . . . , n}?

The answer to this question is denoted by
(
n
k

)
, which is typically read as “n choose k”. To obtain a formula

for
(
n
k

)
, we first consider a different counting problem: how many ways are there to choose a sequence of k

distinct elements of the set {1, . . . , n}? In other words, how many injective functions f are there from the
set {1, . . . , k} to the set {1, 2, . . . , n}? This is easy to determine: there are n possible values for f(1), (n− 1)
possible values for f(2), and so forth, so the number of such functions is given by

n(n− 1)(n− 2) · · · (n− k + 1) =
n(n− 1)(n− 2) · · · (3)(2)(1)

(n− k)(n− k − 1) · · · (3)(2)(1)
=

n!

(n− k)!
.

Of course, this is different from the answer to Question 1, because we are counting ordered sequences of
length k, rather than k element subsets. Every k element subset of {1, 2, . . . , n} can be ordered in precisely
k! different ways. We therefore obtain the identity k!

(
n
k

)
= n!

(n−k)! , or(
n

k

)
=

n!

k!(n− k)!.

Remark 2. The above formula makes sense for k ≤ n; we obviously have
(
n
k

)
= 0 for k > n.

Let us now consider another method of determining the integers
(
n
k

)
, which proceeds not by counting

directly but instead by establishing a recurrence relation. Let Xn,k denote the collection of all subsets of
{1, . . . , n} having size k, so that |Xn,k| =

(
n
k

)
. We can partition the set Xn,k into two subsets.

• Let X+
n,k denote the collection of all k-element subsets of {1, . . . , n} which contain the integer n. Such

a subset is given by the union of {n} with a (k − 1)-element subset of {1, . . . , n− 1}. It follows that

|X+
n,k| = |Xn−1,k−1| =

(
n− 1

k − 1

)
.

• Let X−n,k denote the collection of k-element subsets of {1, . . . , n} which do not contain the integer n.

We then have X−n,k = Xn−1,k, so that

|X−n,k| =
(
n− 1

k

)
.

We therefore have (
n

k

)
= |Xn,k| = |X+

n,k|+ |X
−
n,k| =

(
n− 1

k − 1

)
+

(
n− 1

k

)
,

at least for n > 0.
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Exercise 3. Prove the identity
(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
directly from the formula

(
n
k

)
= n!

k!(n−k)! .

It may be instructive to organize the integers
(
n
k

)
into a table(
0
0

)
(
1
0

) (
1
1

)
(
2
0

) (
2
1

) (
2
2

)
(
3
0

) (
3
1

) (
3
2

) (
3
3

)
(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)

· · · · · · · · · · · · · · · ,

which is called Pascal’s triangle. The recurrence relation
(
n
k

)
=
(
n−1
k−1
)

+
(
n
k

)
dictates how to fill this table in:

each entry is the sum of the two entries diagonally above it. More specifically, we obtain

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

· · · · · · · · · · · · · · · ,

Let’s now see what we can learn using the method of generating functions introduced in the last lecture.
Fix an integer n ≥ 0, and define a power series Fn(x) by the formula

Fn(x) =
∑
k≥0

(
n

k

)
xk.

Since
(
n
k

)
= 0 for k > n, this is actually a finite sum: that is, Fn(x) is a polynomial function of x. For
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example, when n = 0, we obtain F0 = 1. For n > 0, we can use our recurrence relation to obtain

Fn(x) =
∑(

n

k

)
xk

=
∑(

n− 1

k − 1

)
xk +

∑(
n− 1

k

)
xk

= x(
∑(

n− 1

l

)
xl +

∑(
n− 1

k

)
xk

= (x+ 1)Fn−1(x).

It follows that Fn(x) = (x+ 1)n.
Now take 2 variables y and z, and write

(y + z)n = yn(1 +
z

y
)n = ynFn(

z

y
) = yn

∑
k

(
n

k

)
(
z

y
)k =

∑
k

(
n

k

)
yn−kzk.

This is an identity of polynomials, and therefore remains valid after substituting any numbers we like for y
and z. We have proven:

Theorem 4 (Binomial Theorem). For any quantities y and z (belonging to the integers, or to the real
numbers, or more generally any commutative ring) and any n ≥ 0, we have

(y + z)n =
∑(

n

k

)
yn−kzk.

Because of Theorem 4, the integers
(
n
k

)
are often called binomial coefficients.

In the last lecture, we mentioned that generating functions should generally be viewed as formal power
series: that is, we generally do not care whether or not they converge. However, we can sometimes get
information by evaluating a generating function at a point. Let us close this lecture by giving an illustration
of this principle.

Question 5. Fix an integer n ≥ 0. Compute the sum
∑

k≥0 k
(
n
k

)
.

We now describe a few different approaches to this question. First, let’s use the method of generating
functions. Let Fn(x) be defined as above, so that

(
n
k

)
is the coefficient of xk in Fn(x). Let F ′n(x) denote the

derivative of Fn(x), so that the coefficient of xk−1 in F ′n(x) is k
(
n
k

)
. It follows that

∑
k≥0 k

(
n
k

)
is the sum of

the coefficients of the polynomial F ′n(x): that is, it is the integer F ′n(1). We saw above that Fn(x) = (x+1)n.
It follows that F ′n(x) = n(x+ 1)n−1, so that F ′n(1) = n2n−1.

Let us now try to arrive at the same answer by combinatorial means. The idea is to interpret
∑

k≥0 k
(
n
k

)
as the solution to a counting problem.

Question 6. Suppose we are given a group of n people. How many ways are there to select a committee
(that is, a subset of the collection of people) together with a leader of that committee (who we require
belongs to the committee).

Let’s try answer Question 6 in two different ways. Suppose first that we are interested in committees of
size k. In this case, there are

(
n
k

)
choices for the members of the committee, and k choices for its leader:

a total of k
(
n
k

)
choices in all. The answer to Question 6 is then given by summing over k: that is, by∑

k≥0 k
(
n
k

)
.

Here is another way to solve the counting problem posed in Question 6. First, there are n choices for the
leader of the committee. Once the leader is fixed, the remaining n − 1 people can each be assigned to the
committee or not, for a total of 2n−1 choices. We can therefore give n2n−1 as an answer to Question 6. We
conclude that ∑

k≥0

k

(
n

k

)
= n2n−1.
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Let us describe one more way of arriving at the answer. The idea is to interpret the sum appearing in
Question 5 not the solution to a counting problem, but as the solution to an expected value problem.

Question 7. Suppose that a subset S of {1, . . . , n} is chosen at random. What is the expected number of
elements of S?

The answer is evidently n
2 . On the other hand, we can compute the answer as∑

S⊆{1,...,n} |S|
2n

.

Here there
(
n
k

)
terms in the numerator where the associated summand is k, so we can rewrite the numerator

as
∑

k≥0 k
(
n
k

)
. We therefore obtain ∑

k≥0

k

(
n

k

)
= 2n

n

2
= n2n−1.

Recall that a derangement of the set {1, . . . , n} is a permutation of {1, . . . , n} with no fixed points: that
is, a permutation π such that π(i) 6= i for all i. Let’s begin with the following question:

Question 8. How many derangements are there of the set {1, . . . , n}? What is the probability that a
permutation chosen at random is a derangement?

To fix ideas, let Dn denote the number of derangements of the set {1, . . . , n}. We have D0 = 1 (the
identity permutation of the empty set has no fixed points), D1 = 0 (the identity permutation of {1} does
have a fixed point), D2 = 1 (there is a unique derangement of {1, 2}, given by the non-identity permutation),
D3 = 2 (the derangements of the set {1, 2, 3} are precisely the cyclic permutations).

Our goal now is to obtain a formula for the integers Dn. As a starting point, we know that the total
number of permutations of the set {1, . . . , n} is n!. We therefore have

n! = Dn + |X|,

where X is the set of permutations of {1, . . . , n} which have at least one fixed point. In fact, we can say
something more refined. For k > 0, let Xk denote the collection of all permutations of {1, . . . n} having
exactly k fixed points. Then X can be written as the disjoint union of the subsets X1, X2, . . . , Xn. We
therefore have

n! = Dn + |X1|+ |X2|+ |X3|+ · · ·+ |Xn|.

Remark 9. We can write this equation more naturally as

n! = |X0|+ |X1|+ · · ·+ |Xn|,

where X0 denotes the set of permutations with no fixed points: that is, the set of derangements.

To determine Dn from the above formula, we need to know how big the sets Xk are. How can we describe
a permutation π with exactly k fixed points? First, we need to specify which elements of {1, . . . , n} are fixed
points of π: there are

(
n
k

)
possibilities for this in all. Second, we need to specify what our permutation does

on the remaining n− k elements. This restricted permutation must be fixed point free (otherwise, π would
have more than k fixed points), so the number of choices is given by Dn−k. We therefore obtain the formula

|Xk| =
(
n

k

)
Dn−k

so that our earlier equation reads

n! =
∑

0≤k≤n

(
n

k

)
Dn−k.
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Using our formula for the binomial coefficients
(
n
k

)
= n!

k!(n−k)! , we see that both sides of this expression are

divisible by n!. Dividing out, we get

1 =
∑

0≤k≤n

Dn−k

k!(n− k)!
.

The analysis above gives a series of equations (one for each n ≥ 0) which can be used to successively
solve for the integers Dn. Rather than treating all of these equations separately, it will be convenient to
think about them all at once, using the method of generating functions. For this, let us introduce a formal
variable x. Multiplying our previous equation by xn, we get

xn =
∑

0≤k≤n

Dn−kx
n

k!(n− k)!
.

Summing over all n, we obtain an identity of formal power series∑
n≥0

xn =
∑
n≥0

∑
0≤k≤n

Dn−kx
n

k!(n− k)!
.

It is now convenient to rearrange the sum on the right hand side: note that giving an integer n ≥ 0 and
another integer k between 0 and n is equivalent to giving a pair of nonnegative integers k and l, with n = k+l.
We therefore obtain ∑

n≥0

xn =
∑
k,l≥0

Dlx
k+l

k!l!
=
∑
k,l≥0

xk

k!

Dlx
l

l!
.

The right hand side of this expression factors as a product

(
∑
k≥0

xk

k!
)(
∑
l≥0

Dlx
l

l!
).

The first factor should be familiar: it the power series expansion for the exponential function ex. Let us
introduce a notation for the second factor:

F (x) =
∑
l≥0

Dlx
l

l!
= 1 +

x2

2
+
x3

3
+ · · · .

The power series F (x) is called the exponential generating function for the sequence of integers {Dl}l≥0. It
differs from the generating functions we have met so far because of the addition of an auxiliary factor of 1

l!
on the coefficient of xl. We can now rewrite our equation as

1

1− x
= exF (x),

which is easy to solve: we get

F (x) =
e−x

1− x
.
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