
Math 155 (Lecture 28)

November 8, 2011

In the last lecture, we gave a combinatorial proof of the following result:

Theorem 1 (Infinite Version of van der Waerden’s Theorem). Let C be a finite set of colors, and let
f : Z→ C be a coloring of the integers. Then there exist arbitrarily large arithmetic progressions.

In this lecture, we will describe another proof of this result, due to Furstenberg and Weiss, which uses
ideas from topological dynamics.

Notation 2. Fix a finite set C in what follows. Let Y = CZ denote the set of all colorings of the integers.
We define a metric on Y as follows: given a pair of colorings y, y′ : Z→ C, we let

d(y, y′) =

{
0 if y = y′

1
n+1 otherwise.

where n denotes the smallest nonnegative integer such that y(n) 6= y′(n) or y(−n) 6= y′(−n).

As a topological space, Y is given by the product∏
n∈Z

C.

By Tychanoff’s theorem, Y is compact. We define a “translation” operator T : Y → Y , given by Ty(n) =
y(n + 1). This is a homeomorphism from Y to itself. We let Tn denote the nth power of T (where n is
a positive or negative integer). Each Tn is a continuous map from a compact metric space to itself, and
therefore uniformly continuous.

By construction, we have d(y, y′) < 1 if and only if y(0) = y′(0). To say that a coloring y has a
monochromatic arithmetic progression of length k + 1 is to say that there exists integers n and q such that

y(q) = y(q + n) = y(q + 2n) = · · · = y(q + kn).

This is equivalent to saying that
d(T qy, T q+iny) < 1

for 0 ≤ i ≤ k.
Given a coloring y ∈ Y , we define the orbit of y to be the set

O(y) = {Tny : n ∈ Z} ⊆ Y.

We can then state Theorem 1 as follows:

(∗) For every coloring y ∈ Y and every k ≥ 0, there exists a coloring z ∈ O(y) and an integer n ≥ 1 such
that d(z, Tniz) < 1 for 0 ≤ i ≤ k.

Let O(y) denote the closure of O(y). To prove (∗), it suffices to verify the following slightly weaker
assertion:
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(∗′) There exists an integer n ≥ 1 and a coloring z ∈ O(y) such that d(z, Tniz) < 1 for 0 ≤ i ≤ k.

To see that (∗′) implies (∗), note that if n is fixed then the set

{z ∈ Y : d(z, Tniz) < 1 for 1 ≤ i ≤ k}

is open in Y . If this set intersects O(y), it must also intersect O(y).
Assertion (∗′) is a little easier to work with because the X = O(y) is a closed subset of Y , and therefore

compact. We have reduced the proof of Theorem 1 to the following purely topological assertion:

Proposition 3. Let X be a nonempty compact metric space, let T : X → X be a homeomorphism. For
every integer k ≥ 0 and every positive real number ε, there exists a point x ∈ X and an integer n ≥ 1 such
that d(x, Tnix) < ε for 1 ≤ i ≤ k.

The first step in the proof of Proposition 3 is to arrange that the action of T on X is particularly simple.

Definition 4. Let T : X → X be as in Theorem 3. We say that a closed subset Z ∈ X is minimal if Z is
nonempty, T (Z) = Z, and Z = O(z) for each z ∈ Z.

Lemma 5. Let T : X → X be as in Theorem 3. Then there exists a minimal closed subset Z ⊆ X.

Proof. Since X is a compact metric space, there exists a countable basis for the topology of X, given by
open sets U1, U2, · · · ⊆ X. We define a decreasing sequence of closed subsets

X = X0 ⊇ X1 ⊇ X2 ⊇ · · ·

as follows. Assume that Xi has been defined. If Xi ⊆
⋃
n T

n(Ui), set Xi+1 = Xi. Otherwise, set Xi+1 =
Xi −

⋃
Tn(Ui). By construction, each Xi is nonempty and invariant under T . Since X is compact, the

intersection Z =
⋂
Xi is also nonempty (and invariant under T ). We claim that Z is minimal. Suppose

otherwise: then there exists z ∈ Z such that O(z) is not dense in Z. Then we can find an open set Ui such
that Z ∩ Ui 6= ∅ and O(z) ∩ U = ∅. Then

z ∈ Xi −
⋃
n

Tn(Ui)

, so that by construction Xi+1 = Xi −
⋃
n T

nUi. Since Z ⊆ Xi+1, we have Z ∩ Ui = ∅, contradicting our
assumption.

By virtue of Lemma 5, we can replace X by a minimal closed subset Z ⊆ X and thereby reduce to the
case where X is itself minimal. We now proceed by induction on k. If k = 0, we can take x to be any point
of X. Assume therefore that k > 0 and that the Proposition is known for k− 1. We regard k as fixed in the
arguments which follow. For each ε > 0, the inductive hypothesis implies that there exists a point x ∈ X
and an integer n > 0 such that d(x, Tnix) < ε for i = 1, 2, . . . , k − 1. Taking y = T−nx, we have obtain the
following weak version of Proposition 3:

(a) For each ε > 0, there exists an integer n > 0 and a pair of points x, y ∈ X such that d(x, Tniy) < ε for
1 ≤ i ≤ k.

Now fix ε > 0, and apply (a) to choose x, y ∈ X and an integer n such that

d(x, Tniy) <
ε

2

for 1 ≤ i ≤ k.

Lemma 6. For each x ∈ X and each ε > 0, there exists a point y ∈ X and an integer n > 0 such that
d(x, Tniy) < ε for 1 ≤ i ≤ k.
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Proof. Let B denote an open ball of radius ε
2 around X. Then

⋃
m∈Z T

mB is an open T -invariant subset of
X. Since X is minimal, we must have X =

⋃
m∈Z T

mB. Since X is compact, we have X =
⋃
−M≤m≤M TmB

for some M � 0. Each of the maps Tm is uniformly continuous. We may therefore choose a constant δ
such that, whenever d(z, z′) < δ, we have d(Tmz, Tmz′) < ε

2 for −M ≤ m ≤ M . Applying (a), we can find
points x′, y′ ∈ X and an integer n > 0 such that d(x′, Tniy′) < δ for 1 ≤ i ≤ k. We have x′ ∈ TmB for some
−M ≤ m ≤M . Set y = T−my′. Then for 1 ≤ i ≤ k, we have

d(x, Tniy) = d(x, T−mx′) + d(T−mx′, T−mTniy′) <
ε

2
+
ε

2
= ε.

Now fix a ε > 0 and choose an arbitrary point x0 ∈ X. Choose any positive real number δ0 < ε. Using
Lemma 6, we can find a point x1 ∈ X and an integer n0 such that

d(x0, T
in0x1) < δ0

for 1 ≤ i ≤ k. Since the functions Tn0 , T 2n0 , . . . , T kn0 are uniformly continuous, we can choose a positive
real number δ1 ≤ δ0 such that d(y, z) < δ0 − d(x0, T

in0x1) for 1 ≤ i ≤ k. Applying Lemma 6 again, we can
choose a point x2 ∈ X and an integer n1 > 0 such that

d(x1, T
in1x2) < δ1

for 1 ≤ i ≤ k. Note that this implies that

d(T in0x1, T
i(n0+n1)x2) < δ0 − d(x0, T

in0x1),

so that by the triangle inequality we get

d(x0, T
i(n0+n1)x2) < δ0

for 1 ≤ i ≤ k. The functions Tn1 , T 2n1 , . . . , T kn1 are again uniformly continuous. We may therefore choose
a positive real number δ2 ≤ δ0 such that d(y, z) < δ2 implies that d(T in1y, T in1z) < δ1 − d(x1, T

in1x2) for
i ≤ i ≤ k. We may now apply Lemma 6 again to choose n2 > 0 and a point x3 ∈ X such that

d(x2, T
in2x3) < δ2

for 1 ≤ i ≤ k. Arguing as above, we see that this implies

d(x1, T
i(n1+n2)x3) < δ1

and hence
d(x0, T

i(n0+n1+n2)x3) < δ0

for 1 ≤ i ≤ n. Proceeding in this way, we obtain a sequence of points x0, x1, . . . such that for a < b and
1 ≤ i ≤ k, we have

d(xa, T
i(na+na+1+···+nb−1)xb) < δa ≤ δ0.

Since X is compact, the sequence x0, x1, . . . has a convergent subsequence. In particular, we can choose
a < b such that d(xa, xb) < ε− δ0. The triangle inequality then gives

d(xb, T
i(na+···+nb−1xb) < ε

for 1 ≤ i ≤ k, which completes the proof of Proposition 3.
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