
Math 155 (Lecture 27)

November 6, 2011

In this lecture, we will discuss two other Ramsey-type results: the Hales-Jewett Theorem and van der
Waerden’s theorem.

We first consider the Hales-Jewett theorem. Informally speaking, it asserts the following: in large enough
dimensions, the game of Tic-Tac-Toe cannot end in a draw. Let us explain this more precisely. For each
positive integer k, let 〈k〉 = {1, . . . , k}. For each integer n, consider the n-dimensional cubical array 〈k〉n.
The elements x ∈ 〈k〉n can be identified with sequences x(1), x(2), . . . , x(n) ∈ 〈k〉.

We will say that a sequence of elements x1, . . . , xk ∈ 〈k〉n form a line if the following conditions are
satisfied:

(a) For each 1 ≤ j ≤ n, either the sequence x1(j), x2(j), · · · , xk(j) ∈ 〈k〉 is constant, or we have xi(j) = i
for each 1 ≤ i ≤ k.

(b) The sequence x1, . . . , xk is not constant (in other words, for at least one value 1 ≤ j ≤ n, the second
case of (a) holds).

In this case, we will also say that the set {x1, . . . , xk} ⊆ 〈k〉n is a line.

Theorem 1 (Hales-Jewett). Let T = {c1, . . . , ct} be a finite set of colors, and let k ≥ 1 be a positive integer.
Then there exists a positive integer n with the following property: for every coloring

f : 〈k〉n → T

of an n-dimensional cubical array, there exists a monochromatic line: that is, a line L ⊆ 〈k〉n such that f is
constant on L.

Remark 2. In the situation of Theorem 1, we will denote the smallest possible value of n by HJ(k, t).

Example 3. If t = 1, then there is a unique coloring of 〈k〉n and every line in 〈k〉n is monochromatic. We
therefore have HJ(k, 1) = 1.

Example 4. If k = 2, then every two-element subset of 〈k〉n is a line. It follows that an integer n satisfies
the conclusions of Theorem 1 if and only if every map 〈k〉n → T takes on some value more than once. This
is true if and only if 2n > t. It follows that HJ(2, t) is the smallest integer n such that 2n > t.

Example 5. Since the usual 2-dimensional version of Tic-Tac-Toe sometimes (usually?) ends in a draw, we
have HJ(3, 2) > 2.

Let us now prove Theorem 1. The proof will proceed by induction on k. If k ≤ 2, the result is easy
(Example 4); we may therefore assume that k ≥ 3. For a fixed value of k, we will prove the result by
induction on t. If t = 1, there is nothing to prove (Example 3). We may therefore assume t > 1. To prove
the existence of the integer HJ(k, t), we may assume the following:

(a) There exists an integer m = HJ(k, t − 1) such that every coloring of 〈k〉m using t − 1 colors has a
monochromatic line.
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(b) For every integer q, there exists an integer nq = HJ(k − 1, q) such that every coloring of 〈k − 1〉nq

using q colors has a monochromatic line.

Let us see where (b) gets us. Take q = t, and take C0 = nt. Every coloring of 〈k〉C0 using t colors gives in
particular a coloring of 〈k − 1〉C0 ⊆ 〈k〉C0 with t colors. Invoking (b), we see that this second coloring has a
monochromatic line {x1, x2, . . . , xk−1}. Note that this line extends uniquely to a line L0 = {x1, x2, . . . , xk} ⊆
〈k〉C0 . However, we are not guaranteed that this larger line is monochromatic.

Let C1 = HJ(k − 1, tk
C0

), and suppose we are given a coloring f : 〈k〉C0+C1 → T with |T | = t. Let T (1)
denote the set of all colorings of 〈k〉C0 by T . We have a canonical bijection of sets

〈k〉C0+C1 ' 〈k〉C0 × 〈k〉C1 .

We may therefore identify f with a map 〈k〉C1 → T (1): that is, with a coloring of 〈k〉C1 with |T (1)| = tk
C0

colors. In particular, this gives a coloring of 〈k − 1〉C1 with tk
C0

colors. Invoking (b), we see that there
exists a monochromatic line in 〈k − 1〉C1 which extends uniquely to a line L1 = {y1, . . . , yk} ⊆ 〈k〉C1 . By
construction, there is a fixed element c ∈ T (1) such that yi is assigned the color g for each i < k. We can
regard g as a coloring 〈k〉C0 → T , and our choice of C0 guarantees us a line L0 = {x1, . . . , xk} ⊆ 〈k〉C0 such
that x1, . . . , xk−1 are assigned the same color c. Let us identify L0 × L1 with a subset of 〈k〉C0+C1 . The
elements of L0 × L1 are given by ordered pairs (xi, yj). Then f(xi, yj) = c whenever i, j < k.

Now let C2 = HJ(k− 1, tk
C0+C1

). Suppose we are given a coloring of f : 〈k〉C0+C1+C2 → T with |T | = t.
Let T (2) denote the set of all colorings by 〈k〉C0+C1 by T . Arguing as before, we can identify f with a

coloring 〈k〉C2 → T (2). Since |T (2)| = tk
C0+C1

which determines a coloring 〈k − 1〉C2 → T (2). Invoking (b),
we can choose a monochromatic line in 〈k−1〉C2 , which extends uniquely to a line L2 = {z1, . . . , zk} ⊆ 〈k〉C2 .
By construction, the elements zi for i < k are assigned the same color g ∈ T (2), which we can identify with
a coloring 〈k〉C0+C1 → T . Applying the argument of the preceding paragraph, we can find a pair of lines
L0 = {x1, . . . , xk} ⊆ 〈k〉C0 and L1 = {y1, . . . , yk} ⊆ 〈k〉C1 and a color c ∈ T such that g(xi, yi′) = c whenever
i, i′ < k. It follows that f(xi, yi′ , zi′′) = c whenever i, i′, i′′ < k.

Proceeding in this way, we recursively define integers Cj by the formula Cj = HJ(k − 1, tk
C0+···+Cj−1

).
The argument above shows that for every coloring

f : 〈k〉C0+···+Cj → T,

we can choose a color c ∈ T and lines Li = {x(i)1, . . . , x(i)k} ⊆ 〈k〉Ci such that

f(x(0)i0 , x(1)i1 , . . . , x(j)ij ) = c

provided that i0, i1, . . . , ij < k.
Now let m = HJ(k, t − 1) be as in (a). We claim that the integer C0 + C1 + · · · + Cm satisfies the

requirements of Theorem 1: that is, we have HJ(k, t) ≤ C0 + · · ·+Cm. To prove this, suppose we are given
a coloring

f : 〈k〉C0+···+Cm → T,

and choose a color c ∈ T and lines Li ⊆ 〈k〉Ci as above. Write L0 = {x(0)1, . . . , x(0)k}, and let g be the
restriction of f to the subset

{x(0)k} × L1 × · · · × Lm ⊆ 〈k〉C0+C1+···+Cm

There are two cases to consider:

(i) Suppose that the coloring g never takes the value c. Then we can identify g with a coloring 〈k〉m →
T − {c}. Since m = HJ(k, t − 1), we conclude that 〈k〉m has a monochromatic line (of color 6= c),
which is also a monochromatic line for f .
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(ii) Suppose that g takes the value c somewhere. That is, there exist integer i1, i2, . . . , im ≤ k such that

f(x(0)k, x(1)i1 , . . . , x(m)im) = c.

For 1 ≤ p ≤ m and 1 ≤ q ≤ k, let

y(p)q =

{
x(p)q if x(p)iq 6= x(p)k

x(p)iq otherwise.

and set yq = (x(0)q, y(1)q, . . . , y(m)q). Then {y1, y2, . . . , yk} is a monochromatic line in 〈k〉C0+···+Cm

having color c.

Remark 6. The proof of Theorem 1 presented above gives an upper bound for the integers HJ(k, t).
However, the numbers which come out of the proof sketched above quickly become astronomically large.
Using more refined arguments, one can obtain more reasonable upper bounds.

Let us now describe an application of the Hales-Jewett theorem.

Theorem 7 (van der Waerden). Let T be a finite set with t elements, and let k ≥ 1 be an integer. There
there exists a positive integer C with the following property: for every coloring {0, . . . , C} → T , there exists
an arithmetic progression S ⊆ {0, . . . , C} of size at least k.

Proof. Let n = HJ(k, t), and let C = kn − 1. We have a canonical bijection

φ : 〈k〉n → {0, . . . , C},

given by (x1, . . . , xn) 7→
∑

(xi − 1)ki−1 (the inverse bijection just assigns to each integer 0 ≤ p < kn the
digits in its base n expansion). Every coloring {0, . . . , C} → T determines a coloring

〈k〉n → T.

Since n = HJ(k, t), for every such coloring there is a monochromatic line L ⊆ 〈k〉n. It now suffices to observe
that φ(L) is an arithmetic progression of length k.

Corollary 8 (Infinite Version of van der Waerden’s Theorem). Let T be a finite set, and let f : Z → T be
a coloring of the integers. Then there exist arbitrarily large arithmetic progressions S ⊆ Z such that f |S is
constant (that is, monochromatic arithmetic progressions).
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