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November 3, 2011

Our first goal in this lecture is to prove the following infinite version of Ramsey’s theorem:

Theorem 1. Let G be a complete graph with infinitely many vertices, and suppose we are given an edge
coloring of G using a finite set T = {c1, c2, . . . , ct} of colors. Then G has an infinite monochromatic subgraph.

Corollary 2. Let G be an infinite graph. Then G either contains an infinite clique or an infinite anticlique.

Proof of Theorem 1. Choose a vertex v0 ∈ G. There are infinitely many vertices of G different from v0, and
only finitely many colors to choose from. It follows that there exists an infinite subgraph G1 ⊆ G such that
each vertex of G1 is connected to v0 by an edge of the same color, which we will denote by ci0 .

Choose a vertex v1 ∈ G1. There are infinitely many vertices of G1 different form v1, and only finitely
many colors to choose from. It follows that we can choose an infinite subgraph G2 ⊆ G1 such that each
vertex of G2 is connected to v1 by an edge of the same color, which we will denote by ci1 .

Continuing in this way, we can an infinite sequence of subgraphs

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ,

colors ci0 , ci1 , . . . ∈ T , and vertices vj ∈ Gj with the following property: for each vertex w ∈ Gj+1, the edge
connecting vj to w has the color cij . In particular, if j < k, then the edge connecting vj to vk has color cij .

In the infinite list of colors
ci0 , ci1 , ci2 , . . . ,

some color must occur infinitely many times. We may therefore choose a sequence of integers j0, j1, . . . such
that

cij0 = cij1 = cij2 = · · · = c ∈ T.

If j < k and j belongs to the sequence {j0, j1, . . .}, then the edge from vj to vk is colored with the color c.
It follows that the vertices

{vj0 , vj1 , . . .}

span a monochromatic subgraph of G.

Ramsey’s theorem has many generalizations. For example, we need not consider graphs.

Notation 3. Let X be a set. For each integer n ≥ 0, we let X(n) denote the set of n-element subsets of X.
Given a set T , we define a T -coloring of X(n) to be a function f : X(n) → T .

Example 4. When n = 2, a T -coloring of X(n) is just an edge coloring of the complete graph with vertex
set X.

Theorem 1 admits the following generalization:

Theorem 5. Let n ≥ 0, let X be an infinite set, let T be a finite set, and let f : X(n) → T be a T -coloring
of X(n). Then there exists an infinite subset Y ⊆ X which is “monochromatic”: that is, for which the
restriction of f to Y (n) is constant.
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Example 6. If n = 0, then the result is trivial: X(n) has only a single element, the map f carries it to a
single color c ∈ T , and we can take Y to be any infinite subset of X.

If n = 1, then X(1) = X. In this case, Theorem 5 asserts a version of the pigeonhole principle: any map
f from an infinite set X to a finite set T must assume some value c ∈ T infinitely often.

If n = 2, then Theorem 5 recovers the statement of Theorem 1.

Proof. We will proceed by induction on n (we have just seen that the theorem is true for n ≤ 2; any of these
cases will serve as a base case). Assume that n > 0. We now proceed as in the proof of Theorem 1. Choose
an element v0 ∈ X. We now define a map

g0 : (X − {v0})(n−1) → T

by the formula g0(S) = f(S ∪ {v0}). Since X − {v0} is an infinite set, the inductive hypothesis implies that

there exists an infinite subset X1 ⊆ X −{x} such that g0|X(n−1)
1 takes some constant value c0 ∈ T . Choose

an element v1 ∈ X1, and define
g1 : (X1 − {v1})(n−1) → T

by the formula g1(S) = f(S ∪ {v1}). Since X1 − {v1} is infinite, the inductive hypothesis implies that there

is an infinite subset X2 ⊆ X1 − {v1} such that g1|X(n−1)
2 is constant. Proceeding in this way, we obtain an

infinite decreasing sequence of subsets

X = X0 ⊇ X1 ⊇ X2 ⊇ · · · ,

an infinite sequence of colors c0, c1, . . . ∈ T , and elements vi ∈ Xi satisfying the following condition: for
every (n− 1)-element subset S ⊆ Xi+1, we have

f({vi} ∪ S) = ci.

In particular, if i1 < i2 < · · · < in, we have

f({vi1 , · · · , vin}) = ci1 .

Since the set T is finite, some color c ∈ T appears in the list

c0, c1, c2, . . .

infinitely many times. We may therefore choose integers

i0 < i1 < i2 < · · ·

such that cij = c for all j. It follows that
{vi0 , vi1 , . . . , }

is an infinite monochromatic subset of X.

One might ask if some version of Theorem 5 also holds for finite sets. The answer is yes, and the proof
given above can be adapted to the setting of finite sets. However, one can also deduce the finite version from
the infinite version:

Theorem 7. Let n and m be integers and let T be a finite set. Then there exists an integer C (depending
on n, m, and T ) with the following property: for every set X with at least C elements and every coloring
f : X(n) → T , there exists a subset Y ⊆ X of size m such that f |Y (n) is constant.
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Proof. We now proceed by contradiction. Assume that no such integer C exists. For each k, let 〈k〉 =
{1, . . . , k}. Let us say that a coloring f : 〈k〉(n) → T is bad if there does not exist a subset Y ⊆ 〈k〉 of size
m such that f is constant on Y (n). We will denote the collection of all colorings of 〈k〉(n) by Z(k), and the
collection of all bad colorings by Z0(k) ⊆ Z(k). Note that we can regard 〈k〉 as a subset of 〈k + 1〉, so that
every coloring of 〈k + 1〉(n) determines a coloring of 〈k〉(n). This gives us maps

· · · → Z(2)→ Z(1)→ Z(0).

For each k ≥ 0, we define a subset Z0(k) ⊆ Z(k) as follows: a coloring f : 〈k〉(n) → T belongs to Z0(k)
if and only if it extends to a bad coloring of 〈l〉(n), for each l ≥ k. We claim that Z0(k) is nonempty.
Assume otherwise. Then, for each element f ∈ Z(k), there exists l ≥ k such that f does not extend to a bad
coloring of 〈l〉(n). Since Z(k) is finite, we can choose a single integer l ≥ k such that for every f ∈ Z(k), f
does not extend to a bad coloring of 〈l〉(n). This implies that 〈l〉(n) has no bad colorings, contradicting our
assumption.

Let f ∈ Z0(k + 1) and let g denote its image in Z(k). We claim that g ∈ Z0(k): that is, g extends to a
bad coloring of 〈l〉(n) for each l ≥ k. This is clear, since f extends to a bad coloring of 〈l〉(n) for each l > k.
But the converse is also true: if g ∈ Z0(k), then g is the image of a coloring f ∈ Z0(k+ 1). To prove this, let
{f1, . . . , fa} be the finite collection of all colorings of 〈k + 1〉(n) which extend g. If none of these belong to
Z0(k + 1), then we can choose an integer l > k such that none of the colorings fi extends to a bad coloring
of 〈l〉(n). This means that g cannot be extended to a bad coloring of 〈l〉(n), contradicting our assumption
that g ∈ Z0(k).

We therefore have a sequence of surjective maps

· · · → Z0(2)→ Z0(1)→ Z0(0).

Since Z0(0) is nonempty, we can choose a coloring f0 ∈ Z0(0). Using the surjectivity, we can successively
lift f0 to elements fk ∈ Z0(k). Taken together, the fk determine a coloring

f∞ : (Z>0)(n) → T

of the infinite set Z
(n)
>0 . It follows from Theorem 5 that this coloring has an infinite monochromatic subset

Y ⊆ Z>0. Write Y = {y1 < y2 < · · · }. Then {y1, . . . , ym} is a monochromatic subset of 〈ym〉 of size m,
contradicting our assumption that fym

is bad.

The proof of Theorem 7 is a typical example of a compactness argument. It can be formulated naturally
in the language of topology. Let Z denote the collection of all colorings f∞ : (Z>0)(n) → T . Since every
such coloring is determined by its restriction to each of the finite subsets 〈k〉(∞), we can identify Z with a
subset of the product

∏
k≥0 Z(k). Each Z(k) is a finite set, which we can endow with the discrete topology.

We can regard
∏

k≥0 Z(k) as endowed with the product topology, and Z with the subspace topology. Using
Tychanoff’s theorem, we see that

∏
k≥0 Z(k) is compact. It is not hard to see that Z is a closed subset of∏

k≥0 Z(k), and therefore also compact. For each k ≥ 0, let Ck denote the subset of Z consisting of colorings

whose restriction to 〈k〉(n) is bad. Then the Ck form a decreasing chain

C0 ⊇ C1 ⊇ C2 ⊇ · · ·

of closed subsets of Z. If Theorem 7 is false, then there is a bad coloring of each 〈k〉(n). Extending this

arbitrarily to a coloring of Z
(n)
>0 , we see that each Ci is nonempty. Using the compactness of Z, we deduce that⋂

k Ck is nonempty. This gives a coloring of Z
(n)
>0 whose restriction to each 〈k〉(n) is bad, which contradicts

Theorem 5.
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