Math 155 (Lecture 25)

November 1, 2011

In Problem Set 7, you proved the following result:
Proposition 1. Let A be a partially ordered set. If A has at least $m n+1$ elements, then A has either a chain of length $m+1$ or an antichain of length $n+1$.

In the situation of Proposition 1, we can associate to A a certain graph G. The vertices of G are the elements of A, and two vertices $x, y \in G$ are connected by an edge if and only if either $x<y$ or $y<x$. If $S \subseteq A$ is a set of vertices of G, then S is a chain (when regarded as a subset of A) if and only if it is a clique (when regarded as a subset of G): that is, if and only every pair of distinct elements of S are adjacent in G. A subset $S \subseteq A$ is an antichain (when regarded as a subset of A) if and only if it is an anticlique (when regarded as a subset of G): that is, if and only if no pairs of elements of S are adjacent in G. We can rephrase Proposition 1 as follows:

Proposition 2. Let G be a graph which is constructed by the above procedure. If G has $m n+1$ vertices, then G either contains a clique of size $m+1$ or an anticlique of size $n+1$.

Of course, the graphs that arise from partially ordered sets are rather special. Nevertheless, there is a version of Proposition 2 which is true in general:

Theorem 3 (Ramsey's Theorem, First Version). Let m and n be integers. Then there exists an integer C with the following property: for every graph G with at least C vertices, G contains either a clique of size m or an anticlique of size n.

Notation 4. Let m and n be integers. We let $R(m, n)$ denote the least integer C which satisfies the requirements of Theorem 3. The numbers $R(m, n)$ are called Ramsey numbers.

Remark 5. For any graph G, we can make a new graph G^{\prime} with the same vertex set, where a pair of distinct edges $x, y \in G$ are adjacent in G if and only if they are not adjacent in G^{\prime}. Note that a set of vertices forms a clique in G if and only if it forms an anticlique in G^{\prime}, and vice-versa. It follows that the considerations of Theorem 3 are symmetric in m and n. In particular, we have an equality of Ramsey numbers

$$
R(m, n)=R(n, m)
$$

Example 6. For every integer n, we have $R(0, n)=0$ (every graph contains a clique of size zero).
Example 7. If $n>0$, we have $R(1, n)=1$ (since every nonempty graph contains a clique of size one).
Example 8. Let G be a graph. If G has any edges, then it contains a clique of size 2 . Otherwise, G itself is an anticlique of size n, where n is the number of vertices of G. It follows that $R(2, n)=n$.

Proof of Theorem 3. We proceed by induction on m and n. If m or n is equal to zero, there is nothing to prove (we can take $C=0$, by virtue of Example 6). Suppose therefore that $m, n>0$. The inductive hypothesis implies that there exist integers C^{\prime} and $C^{\prime \prime}$ with the following properties:
(a) If G is a graph with at least C^{\prime} vertices, then G either contains a clique of size $m-1$ or an anticlique of size n.
(b) If G is a graph with at least $C^{\prime \prime}$ vertices, then G either contains a clique of size m or an anticlique of size n.

Now let G be any nonempty graph, and let $v \in G$ be a vertex. Let G_{-}be the subgraph of G spanned by those vertices which are adjacent to v, and G_{+}the subgraph of G spanned by those vertices which are distinct from v and not adjacent to v.

For each graph H, let $|H|$ denote the number of vertices of H. If $\left|G_{-}\right| \geq C^{\prime}$, then either G_{-}contains an anticlique of size n (in which case G does too), or G_{-}contains a clique of size $m-1$ (in which case G contains a clique of size m, obtained by adding the vertex v). Similarly, if $\left|G_{+}\right| \geq C^{\prime \prime}$, then G must contain either a clique of size m or an anticlique of size n. If neither of these conditions is satisfied, then we get

$$
|G|=\left|G_{-}\right|+\left|G_{+}\right|+1 \leq\left(C^{\prime}-1\right)+\left(C^{\prime \prime}-1\right)+1=C^{\prime}+C^{\prime \prime}-1<C^{\prime}+C^{\prime \prime}
$$

It follows that if $|G| \geq C^{\prime}+C^{\prime \prime}$, then G contains either a clique of size m or an anticlique of size n.
Remark 9. The proof of Theorem 3 gives the following inequality of Ramsey numbers: for $m, n \geq 2$ we have

$$
R(m, n) \leq R(m-1, n)+R(m, n-1)
$$

(If $m=n=1$, this inequality fails, since $R(m-1, n)+R(m, n-1)=0$, and in an empty graph we cannot choose a vertex v to start the proof of Theorem 3 .

Example 10. Taking $m=n=3$, we get an inequality

$$
R(3,3) \leq R(2,3)+R(3,2)=3+3=6
$$

That is, every graph of size 6 either contains a clique of size 3 or an anticlique of size 3 . This is optimal: if G is the graph consisting of vertices and edges of a regular pentagon, then G does not contain a clique or anticlique of size 3 .

We can use Remark 9 to get an upper bound for the Ramsey numbers $R(m, n)$:
Proposition 11. Let $m, n \geq 1$ be positive integers. Then

$$
R(m, n) \leq\binom{ m+n-2}{m-1}=\frac{(m+n-2)!}{(m-1)!(n-1)!}
$$

Proof. We proceed by induction on m and n. If m or n is equal to 1 , then both sides are equal to 1 and there is nothing to prove. Let's therefore assume that $m, n \geq 2$. Combining Remark 9 with the inductive hypothesis, we get

$$
R(m, n) \leq R(m-1, n)+R(m, n-1) \leq\binom{ m+n-3}{m-2}+\binom{m+n-3}{m-1}=\binom{m+n-2}{m-1}
$$

Remark 12. The inequality $R(m, n) \leq R(m-1, n)+R(m, n-1)$ is not sharp in general. For example, one can show that

$$
R(3,4)=9<10=4+6=R(2,4)+R(3,3)
$$

Remark 13. One can show that the Ramsey number $R(4,4)$ is equal to 18 . The exact values of $R(n, n)$ are not known for $n \geq 5$. However, we do know that they grow very quickly with n : we will prove this in the next lecture.

Ramsey's theorem has many generalizations. Let us consider one.
Definition 14. Let G be a graph, and let $T=\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}$ be a set of colors. An edge coloring of G is a function from the set of edges of G to the set T. Given an edge coloring of G, we will say that a set S of vertices of G is monochromatic if the edge coloring carries every edge joining two vertices of S to the same element $c \in T$. In this case, we say that S is monochromatic with color c.

Theorem 15 (Ramsey's Theorem, Several Color Version). Let $T=\left\{c_{1}, \ldots, c_{t}\right\}$ be a finite set, and suppose we are given a list of integers $n_{1}, n_{2}, \ldots, n_{t}$. Then there exists an integer C with the following property: for every edge coloring of the complete graph G with at least C vertices, there exists a set of vertices S of G which is monochromatic of some color c_{i}, and contains at least n_{i} elements.

Remark 16. Theorem 3 is just the special case of Theorem 15 where $t=2$. Note that to give a graph G with vertex set V is equivalent to giving an edge coloring of the complete graph with vertex set V, using the color set $T=\{$ in, out $\}$.

Notation 17. The least integer C satisfying the requirements of Theorem 15 is denoted by $R\left(n_{1}, n_{2}, \ldots, n_{t}\right)$.
Proof. As in the proof of Theorem 3, we proceed by induction on the integers $n_{1}, n_{2}, \ldots, n_{t}$. Let us assume that each n_{i} is ≥ 1 (otherwise, we can take $C=0$). The inductive hypothesis implies that the Ramsey numbers

$$
C_{i}=R\left(n_{1}, \ldots, n_{i-1}, n_{i}-1, n_{i+1}, \ldots, n_{t}\right)
$$

are well-defined for $1 \leq i \leq t$.
Let G be a complete nonempty graph with at least

$$
2-t+\sum_{1 \leq i \leq t} C_{i}
$$

vertices, with an edge coloring by the set T. Choose a vertex $v \in G$. For $1 \leq i \leq t$, let G_{t} be the graph spanned by those vertices w such that the edge joining v and w is colored with c_{i}. Then

$$
1+\sum_{1 \leq i \leq t}\left|G_{i}\right|=|G| \geq 2-t+\sum_{1 \leq i \leq t} C_{i}
$$

so that

$$
\sum_{1 \leq i \leq t}\left|G_{i}\right|>\sum_{1 \leq i \leq t} C_{i}-1
$$

It follows that $\left|G_{i}\right|>C_{i}-1$ for some i. Then either G_{i} contains a monochromatic subset of size n_{j} and color c_{j} for $j \neq i$ (in which case G does too), or G_{i} contains a monochromatic subset of size $n_{i}-1$ and color c_{i} (in which case G contains a monochromatic subset of size n_{i} and color c_{i}, obtained by adding the vertex $v)$. It follows that we can take $C=2-t+\sum_{1 \leq i \leq t} C_{i}$.
Remark 18. The proof of Theorem 15 gives the inequality

$$
R\left(n_{1}, \ldots, n_{t}\right) \leq 2-t+\sum_{1 \leq i \leq t} R\left(n_{1}, \ldots, n_{i-1}, n_{i}-1, n_{i+1}, \ldots, n_{t}\right)
$$

provided that the sum on the right hand side is at least 1.

