
Math 155 (Lecture 25)

November 1, 2011

In Problem Set 7, you proved the following result:

Proposition 1. Let A be a partially ordered set. If A has at least mn + 1 elements, then A has either a
chain of length m + 1 or an antichain of length n + 1.

In the situation of Proposition 1, we can associate to A a certain graph G. The vertices of G are the
elements of A, and two vertices x, y ∈ G are connected by an edge if and only if either x < y or y < x. If
S ⊆ A is a set of vertices of G, then S is a chain (when regarded as a subset of A) if and only if it is a
clique (when regarded as a subset of G): that is, if and only every pair of distinct elements of S are adjacent
in G. A subset S ⊆ A is an antichain (when regarded as a subset of A) if and only if it is an anticlique
(when regarded as a subset of G): that is, if and only if no pairs of elements of S are adjacent in G. We can
rephrase Proposition 1 as follows:

Proposition 2. Let G be a graph which is constructed by the above procedure. If G has mn + 1 vertices,
then G either contains a clique of size m + 1 or an anticlique of size n + 1.

Of course, the graphs that arise from partially ordered sets are rather special. Nevertheless, there is a
version of Proposition 2 which is true in general:

Theorem 3 (Ramsey’s Theorem, First Version). Let m and n be integers. Then there exists an integer C
with the following property: for every graph G with at least C vertices, G contains either a clique of size m
or an anticlique of size n.

Notation 4. Let m and n be integers. We let R(m,n) denote the least integer C which satisfies the
requirements of Theorem 3. The numbers R(m,n) are called Ramsey numbers.

Remark 5. For any graph G, we can make a new graph G′ with the same vertex set, where a pair of distinct
edges x, y ∈ G are adjacent in G if and only if they are not adjacent in G′. Note that a set of vertices forms
a clique in G if and only if it forms an anticlique in G′, and vice-versa. It follows that the considerations of
Theorem 3 are symmetric in m and n. In particular, we have an equality of Ramsey numbers

R(m,n) = R(n,m).

Example 6. For every integer n, we have R(0, n) = 0 (every graph contains a clique of size zero).

Example 7. If n > 0, we have R(1, n) = 1 (since every nonempty graph contains a clique of size one).

Example 8. Let G be a graph. If G has any edges, then it contains a clique of size 2. Otherwise, G itself
is an anticlique of size n, where n is the number of vertices of G. It follows that R(2, n) = n.

Proof of Theorem 3. We proceed by induction on m and n. If m or n is equal to zero, there is nothing
to prove (we can take C = 0, by virtue of Example 6). Suppose therefore that m,n > 0. The inductive
hypothesis implies that there exist integers C ′ and C ′′ with the following properties:
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(a) If G is a graph with at least C ′ vertices, then G either contains a clique of size m− 1 or an anticlique
of size n.

(b) If G is a graph with at least C ′′ vertices, then G either contains a clique of size m or an anticlique of
size n.

Now let G be any nonempty graph, and let v ∈ G be a vertex. Let G− be the subgraph of G spanned
by those vertices which are adjacent to v, and G+ the subgraph of G spanned by those vertices which are
distinct from v and not adjacent to v.

For each graph H, let |H| denote the number of vertices of H. If |G−| ≥ C ′, then either G− contains
an anticlique of size n (in which case G does too), or G− contains a clique of size m − 1 (in which case G
contains a clique of size m, obtained by adding the vertex v). Similarly, if |G+| ≥ C ′′, then G must contain
either a clique of size m or an anticlique of size n. If neither of these conditions is satisfied, then we get

|G| = |G−|+ |G+|+ 1 ≤ (C ′ − 1) + (C ′′ − 1) + 1 = C ′ + C ′′ − 1 < C ′ + C ′′.

It follows that if |G| ≥ C ′ + C ′′, then G contains either a clique of size m or an anticlique of size n.

Remark 9. The proof of Theorem 3 gives the following inequality of Ramsey numbers: for m,n ≥ 2 we
have

R(m,n) ≤ R(m− 1, n) + R(m,n− 1).

(If m = n = 1, this inequality fails, since R(m− 1, n) + R(m,n− 1) = 0, and in an empty graph we cannot
choose a vertex v to start the proof of Theorem 3.

Example 10. Taking m = n = 3, we get an inequality

R(3, 3) ≤ R(2, 3) + R(3, 2) = 3 + 3 = 6.

That is, every graph of size 6 either contains a clique of size 3 or an anticlique of size 3. This is optimal: if
G is the graph consisting of vertices and edges of a regular pentagon, then G does not contain a clique or
anticlique of size 3.

We can use Remark 9 to get an upper bound for the Ramsey numbers R(m,n):

Proposition 11. Let m,n ≥ 1 be positive integers. Then

R(m,n) ≤
(
m + n− 2

m− 1

)
=

(m + n− 2)!

(m− 1)!(n− 1)!
.

Proof. We proceed by induction on m and n. If m or n is equal to 1, then both sides are equal to 1 and
there is nothing to prove. Let’s therefore assume that m,n ≥ 2. Combining Remark 9 with the inductive
hypothesis, we get

R(m,n) ≤ R(m− 1, n) + R(m,n− 1) ≤
(
m + n− 3

m− 2

)
+

(
m + n− 3

m− 1

)
=

(
m + n− 2

m− 1

)
.

Remark 12. The inequality R(m,n) ≤ R(m− 1, n) +R(m,n− 1) is not sharp in general. For example, one
can show that

R(3, 4) = 9 < 10 = 4 + 6 = R(2, 4) + R(3, 3).

Remark 13. One can show that the Ramsey number R(4, 4) is equal to 18. The exact values of R(n, n) are
not known for n ≥ 5. However, we do know that they grow very quickly with n: we will prove this in the
next lecture.
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Ramsey’s theorem has many generalizations. Let us consider one.

Definition 14. Let G be a graph, and let T = {c1, c2, . . . , ct} be a set of colors. An edge coloring of G is a
function from the set of edges of G to the set T . Given an edge coloring of G, we will say that a set S of
vertices of G is monochromatic if the edge coloring carries every edge joining two vertices of S to the same
element c ∈ T . In this case, we say that S is monochromatic with color c.

Theorem 15 (Ramsey’s Theorem, Several Color Version). Let T = {c1, . . . , ct} be a finite set, and suppose
we are given a list of integers n1, n2, . . . , nt. Then there exists an integer C with the following property: for
every edge coloring of the complete graph G with at least C vertices, there exists a set of vertices S of G
which is monochromatic of some color ci, and contains at least ni elements.

Remark 16. Theorem 3 is just the special case of Theorem 15 where t = 2. Note that to give a graph G
with vertex set V is equivalent to giving an edge coloring of the complete graph with vertex set V , using the
color set T = { in, out }.

Notation 17. The least integer C satisfying the requirements of Theorem 15 is denoted by R(n1, n2, . . . , nt).

Proof. As in the proof of Theorem 3, we proceed by induction on the integers n1, n2, . . . , nt. Let us assume
that each ni is ≥ 1 (otherwise, we can take C = 0).The inductive hypothesis implies that the Ramsey
numbers

Ci = R(n1, . . . , ni−1, ni − 1, ni+1, . . . , nt)

are well-defined for 1 ≤ i ≤ t.
Let G be a complete nonempty graph with at least

2− t +
∑

1≤i≤t

Ci

vertices, with an edge coloring by the set T . Choose a vertex v ∈ G. For 1 ≤ i ≤ t, let Gt be the graph
spanned by those vertices w such that the edge joining v and w is colored with ci. Then

1 +
∑

1≤i≤t

|Gi| = |G| ≥ 2− t +
∑

1≤i≤t

Ci,

so that ∑
1≤i≤t

|Gi| >
∑

1≤i≤t

Ci − 1.

It follows that |Gi| > Ci − 1 for some i. Then either Gi contains a monochromatic subset of size nj and
color cj for j 6= i (in which case G does too), or Gi contains a monochromatic subset of size ni− 1 and color
ci (in which case G contains a monochromatic subset of size ni and color ci, obtained by adding the vertex
v). It follows that we can take C = 2− t +

∑
1≤i≤t Ci.

Remark 18. The proof of Theorem 15 gives the inequality

R(n1, . . . , nt) ≤ 2− t +
∑

1≤i≤t

R(n1, . . . , ni−1, ni − 1, ni+1, . . . , nt)

provided that the sum on the right hand side is at least 1.
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