Math 155 (Lecture 25)

November 1, 2011

In Problem Set 7, you proved the following result:

Proposition 1. Let A be a partially ordered set. If A has at least mn + 1 elements, then A has either a
chain of length m + 1 or an antichain of length n + 1.

In the situation of Proposition 1, we can associate to A a certain graph G. The vertices of G are the
elements of A, and two vertices xz,y € G are connected by an edge if and only if either z < y or y < z. If
S C A is a set of vertices of G, then S is a chain (when regarded as a subset of A) if and only if it is a
clique (when regarded as a subset of G): that is, if and only every pair of distinct elements of S are adjacent
in G. A subset S C A is an antichain (when regarded as a subset of A) if and only if it is an anticlique
(when regarded as a subset of G): that is, if and only if no pairs of elements of S are adjacent in G. We can
rephrase Proposition 1 as follows:

Proposition 2. Let G be a graph which is constructed by the above procedure. If G has mn + 1 vertices,
then G either contains a clique of size m + 1 or an anticlique of size n + 1.

Of course, the graphs that arise from partially ordered sets are rather special. Nevertheless, there is a
version of Proposition 2 which is true in general:

Theorem 3 (Ramsey’s Theorem, First Version). Let m and n be integers. Then there exists an integer C
with the following property: for every graph G with at least C' vertices, G contains either a clique of size m
or an anticlique of size n.

Notation 4. Let m and n be integers. We let R(m,n) denote the least integer C' which satisfies the
requirements of Theorem 3. The numbers R(m,n) are called Ramsey numbers.

Remark 5. For any graph G, we can make a new graph G’ with the same vertex set, where a pair of distinct
edges z,y € G are adjacent in G if and only if they are not adjacent in G’. Note that a set of vertices forms
a clique in G if and only if it forms an anticlique in G’, and vice-versa. It follows that the considerations of
Theorem 3 are symmetric in m and n. In particular, we have an equality of Ramsey numbers

R(m,n) = R(n,m).
Example 6. For every integer n, we have R(0,n) = 0 (every graph contains a clique of size zero).
Example 7. If n > 0, we have R(1,n) = 1 (since every nonempty graph contains a clique of size one).

Example 8. Let G be a graph. If G has any edges, then it contains a clique of size 2. Otherwise, G itself
is an anticlique of size n, where n is the number of vertices of G. It follows that R(2,n) = n.

Proof of Theorem 3. We proceed by induction on m and n. If m or n is equal to zero, there is nothing
to prove (we can take C' = 0, by virtue of Example 6). Suppose therefore that m,n > 0. The inductive
hypothesis implies that there exist integers C’ and C” with the following properties:



(a) If G is a graph with at least C’ vertices, then G either contains a clique of size m — 1 or an anticlique
of size n.

(b) If G is a graph with at least C” vertices, then G either contains a clique of size m or an anticlique of
size n.

Now let G be any nonempty graph, and let v € G be a vertex. Let G_ be the subgraph of G spanned
by those vertices which are adjacent to v, and G4 the subgraph of G spanned by those vertices which are
distinct from v and not adjacent to v.

For each graph H, let |H| denote the number of vertices of H. If |G_| > C’, then either G_ contains
an anticlique of size n (in which case G does too), or G_ contains a clique of size m — 1 (in which case G
contains a clique of size m, obtained by adding the vertex v). Similarly, if |G4| > C”, then G must contain
either a clique of size m or an anticlique of size n. If neither of these conditions is satisfied, then we get

|Gl = |G|+ |G| +1<(C"=1)+(C"=1)+1=C"+C"-1<C" +C".
It follows that if |G| > C' + C”, then G contains either a clique of size m or an anticlique of size n. O

Remark 9. The proof of Theorem 3 gives the following inequality of Ramsey numbers: for m,n > 2 we
have
R(m,n) < R(m —1,n)+ R(m,n —1).

(If m = n = 1, this inequality fails, since R(m — 1,n) + R(m,n — 1) = 0, and in an empty graph we cannot
choose a vertex v to start the proof of Theorem 3.
Example 10. Taking m = n = 3, we get an inequality

R(3,3) < R(2,3) + R(3,2) =343 =6.

That is, every graph of size 6 either contains a clique of size 3 or an anticlique of size 3. This is optimal: if
G is the graph consisting of vertices and edges of a regular pentagon, then G does not contain a clique or
anticlique of size 3.

We can use Remark 9 to get an upper bound for the Ramsey numbers R(m, n):

Proposition 11. Let m,n > 1 be positive integers. Then

R(m,n) < (m+"—2> - (m+n—2)!

m—1 C (m—=1D(n—-1)"

Proof. We proceed by induction on m and n. If m or n is equal to 1, then both sides are equal to 1 and
there is nothing to prove. Let’s therefore assume that m,n > 2. Combining Remark 9 with the inductive
hypothesis, we get

m+n—3 m+n—3 m+n—2
< -1 -1)< = '
R(m,n) < R(m —1,n) + R(m,n >—( m—2 )*( m—1 ) ( m—1 )

O

Remark 12. The inequality R(m,n) < R(m —1,n)+ R(m,n — 1) is not sharp in general. For example, one
can show that
R(3,4) =9 <10=4+6 = R(2,4) + R(3,3).

Remark 13. One can show that the Ramsey number R(4,4) is equal to 18. The exact values of R(n,n) are
not known for n > 5. However, we do know that they grow very quickly with n: we will prove this in the
next lecture.



Ramsey’s theorem has many generalizations. Let us consider one.

Definition 14. Let G be a graph, and let T' = {c1,¢a,...,c:} be a set of colors. An edge coloring of G is a
function from the set of edges of G to the set T'. Given an edge coloring of G, we will say that a set .S of
vertices of G is monochromatic if the edge coloring carries every edge joining two vertices of S to the same
element ¢ € T'. In this case, we say that S is monochromatic with color c.

Theorem 15 (Ramsey’s Theorem, Several Color Version). Let T = {c1,...,c:} be a finite set, and suppose
we are given a list of integers ny,na,...,ng. Then there exists an integer C' with the following property: for
every edge coloring of the complete graph G with at least C vertices, there exists a set of vertices S of G
which is monochromatic of some color ¢;, and contains at least n; elements.

Remark 16. Theorem 3 is just the special case of Theorem 15 where ¢ = 2. Note that to give a graph G
with vertex set V is equivalent to giving an edge coloring of the complete graph with vertex set V, using the
color set T'={ in, out }.

Notation 17. The least integer C satisfying the requirements of Theorem 15 is denoted by R(ni,na,...,n).

Proof. As in the proof of Theorem 3, we proceed by induction on the integers ny,ns,...,ns. Let us assume
that each n; is > 1 (otherwise, we can take C' = 0).The inductive hypothesis implies that the Ramsey
numbers

Ci = R(nl, ey N1, MG — 1,ni+1, v ,nt)

are well-defined for 1 <7 <.
Let G be a complete nonempty graph with at least

2—t+ Z C;

1<i<t

vertices, with an edge coloring by the set 7. Choose a vertex v € G. For 1 < i < t, let G¢ be the graph
spanned by those vertices w such that the edge joining v and w is colored with ¢;. Then

1+ Z Gi| =G| =2 —t+ Z Ci,

1<i<t 1<i<t

Z |Gl|> Z C; — 1.

1<i<t 1<i<t

so that

It follows that |G;| > C; — 1 for some i. Then either G; contains a monochromatic subset of size n; and
color ¢; for j # i (in which case G does too), or G; contains a monochromatic subset of size n; — 1 and color
¢; (in which case G contains a monochromatic subset of size n; and color ¢;, obtained by adding the vertex
v). It follows that we can take C' =2 —t+ >, _,., C. 0O

Remark 18. The proof of Theorem 15 gives the inequality

R(ny,...,m) <2—t+ Z R(ny,...,ni—1,m; — 1,miq1, ..., ny)

1<i<t

provided that the sum on the right hand side is at least 1.



