Math 155 (Lecture 23)

October 30, 2011

Let S be a finite set, and let $\operatorname{Part}(S)$ denote the collection of all equivalence relations on S. Recall that $\operatorname{Part}(S)$ has a least element E_{\perp} and a largest element E_{\top}. In the last lecture, we proved the following formula for the Möbius function of $\operatorname{Part}(S)$:

Theorem 1. If S is a finite set with n elements, we have

$$
\mu\left(E_{\perp}, E_{\top}=(-1)^{n-1}(n-1)!.\right.
$$

Let us now describe a typical application of this formula.
Question 2. Let S be a finite set. How many connected graphs are there with vertex set S ?
There is an analogous question which is much easier to answer: the total number of (possibly disconnected) graphs with vertex set S is given by $2\binom{n}{2}$, where n is the number of elements of S. To turn this into an answer to Question 2, we need to analyze the difference between connected and disconnected graphs.

Note that if G is a graph with vertex set S, then G determines an equivalence relation E_{G} on S. Here E_{G} is the equivalence relation of "being in the same connected component of G ": that is, $x E_{G} y$ if and only if there is a path in G joining x with y. Note that a graph G is connected if and only if $E_{G}=E_{\top}$ is the largest element of $\operatorname{Part}(S)$.

Let X be the set of all graphs with vertex set S. For each equivalence relation $E \in \operatorname{Part}(S)$, define

$$
X_{E}=\left\{G \in X: E_{G} \leq E\right\} \quad X(E)=\left\{G \in X: E_{G}=E\right\} .
$$

Note that $X_{E}=\bigcup_{E^{\prime} \leq E} X\left(E^{\prime}\right)$, so that

$$
\left|X_{E}\right|=\sum_{E^{\prime} \leq E}\left|X\left(E^{\prime}\right)\right| .
$$

Applying Möbius inversion, we get

$$
\left|X\left(E^{\prime}\right)\right|=\sum_{E \leq E^{\prime}} \mu\left(E, E^{\prime}\right)\left|X_{E}\right| .
$$

In particular, the number of connected graphs is given by

$$
\sum_{E \in \operatorname{Part}(S)} \mu\left(E, E_{\top}\right)\left|X_{E}\right| .
$$

Let us now evaluate each individual summand. Note that $\left\{E^{\prime} \in \operatorname{Part}(S): E \leq E^{\prime}\right\}$ is isomorphic to the set of equivalence relations on the set S / E. Using Theorem 1 , we deduce

$$
\mu\left(E, E_{\top}\right)=(-1)^{|S / E|-1}(|S / E|-1)!.
$$

The size of the set $\left|X_{E}\right|$ is easy to determine: an element of X_{E} is just a graph, each of whose connected components is contained in an equivalence class of E. The number of such graphs is given by

$$
\prod_{K \in S / E} 2^{\binom{|K|}{2}}
$$

We can therefore write the answer to Question 2 as

$$
\sum_{E \in \operatorname{Part}(S)}(-1)^{|S / E|-1}(|S / E|-1)!2^{\sum_{K \in S / E}\binom{|K|}{2}}
$$

We can do a little better by writing this as a sum not over equivalence relations, but over partitions $n=k_{1}+2 k_{2}+\cdots$, where n denotes the number of elements of S. Recall that the number of equivalence relations with exactly k_{i} equivalence classes of cardinality i is given by

$$
\frac{n!}{\prod_{i \geq 1}\left(i!^{k_{i}} k_{i}!\right)}
$$

We may therefore rewrite our answer as

$$
n!\sum_{n=k_{1}+2 k_{2}+\cdots}(-1)^{k-1}(k-1)!\prod_{i \geq 1} \frac{\left(i!2^{\binom{i}{2}}\right)^{k_{i}}}{k_{i}!}
$$

where k denotes the sum $k_{1}+k_{2}+\cdots$.
Remark 3. We have already studied another method of obtaining formulas like this. Let Y denote the species of graphs and Y_{0} denote the species of connected graphs. Since every graph can be written uniquely as a union of connected components, we have $Y=\exp \left(Y_{0}\right)$. It follows that the exponential generating functions of Y and Y_{0} are related by the formula

$$
F_{Y}(x)=e^{F_{Y_{0}}(x)}
$$

We can write this as

$$
F_{Y_{0}}(x)=\log \left(F_{Y}(x)\right)=\log \sum_{n \geq 0} \frac{2^{\binom{n}{2}}}{n!} x^{n}
$$

Applying the power series expansion for the logarithm to this, we can recover the same answer to Question 2.

Let's now study another example of a Möbius function.
Example 4. Let $\mathbf{Z}_{>0}$ be the set of positive integers, partially ordered by divisibility. Then $\mathbf{Z}_{>0}$ is locally finite (any divisor of n is $\leq n$, so every positive integer has only finitely many divisors). Let us compute the Möbiusfunction $\mu_{\mathbf{Z}_{>0}}$.

Fix an integer $n>0$ with prime factorization $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$. Let $X \subseteq \mathbf{Z}_{>0}$ be the set of divisors of n : namely, those integers of the form

$$
p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}
$$

where $f_{i} \leq e_{i}$ for $1 \leq i \leq k$. As a partially ordered set, X can be identified with the product

$$
\prod_{1 \leq i \leq k}\left\{0,1, \ldots, e_{k}\right\}
$$

Combining this with our understanding of the Möbius function of the factors, we see that the Möbius function μ_{X} of X is given by

$$
\mu_{X}\left(\prod p_{i}^{f_{i}}, \prod p_{i}^{g_{i}}\right)=\prod_{1 \leq i \leq k} \begin{cases}1 & \text { if } f_{i}=g_{i} \\ -1 & \text { if } f_{i}=g_{i}-1 \\ 0 & \text { otherwise }\end{cases}
$$

In other words, we ahve

$$
\mu_{X}\left(m, m^{\prime}\right)= \begin{cases}(-1)^{j} & \text { if } \frac{m^{\prime}}{m} \text { is a product of } j \text { distinct primes. } \\ 0 & \text { otherwise. }\end{cases}
$$

Since μ_{X} is just given by the restriction of $\mu_{\mathbf{z}_{>0}}$ to X, we get

$$
\mu_{\mathbf{Z}_{>0}}(m, n)= \begin{cases}(-1)^{j} & \text { if } \frac{n}{m} \text { is a product of } j \text { distinct primes. } \\ 0 & \text { otherwise. }\end{cases}
$$

Note that the integer $\mu_{\mathbf{Z}_{>0}}(m, n)$ depends only on the quotient $\frac{n}{m}$. It is therefore traditional to rewrite $\mu_{\mathbf{Z}_{>0}}$ as a function one variable. Let us say that an integer n is square-free if it is not divisible by the square of any prime. Define

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \cdots p_{k} \text { is square-free } \\ 0 & \text { otherwise }\end{cases}
$$

We can then write

$$
\mu_{\mathbf{Z}_{>0}}(m, n)= \begin{cases}\mu\left(\frac{n}{m}\right) & \text { if } m \mid n \\ 0 & \text { otherwise }\end{cases}
$$

The function $\mu: \mathbf{Z}_{>0} \rightarrow \mathbf{Z}$ constructed above often simply referred to as the Möbiusfunction. Applying Möbius inversion in this context gives the following:

Proposition 5. Let $f: \mathbf{Z}_{>0} \rightarrow \mathbf{Z}$ be an arbitrary function, and define $g: \mathbf{Z}_{>0} \rightarrow \mathbf{Z}$ by the formula

$$
g(n)=\sum_{d \mid n} f(d)
$$

Then we can recover f by the formula

$$
f(n)=\sum_{d \mid n} g(d) \mu\left(\frac{n}{d}\right)
$$

Example 6. Recall that Euler's ϕ-function $\phi: \mathbf{Z}_{>0} \rightarrow \mathbf{Z}$ assigns to each integer n the number of elements of the set $\{1,2, \ldots, n\}$ which are relatively prime to n. Set $X=\{1,2, \ldots, n\}$. For each $d \mid n$, let X_{d} denote the set of all elements $m \in X$ such that the greatest common divisor of m and n is d. The function $m \mapsto \frac{m}{d}$ induces a bijection from X_{d} to the subset of $\left\{1,2, \ldots, \frac{n}{d}\right\}$ consisting of elements which are relatively prime to $\frac{n}{d}$. We therefore have $\left|X_{d}\right|=\phi\left(\frac{n}{d}\right)$. Since X is given by the disjoint union of the X_{d} 's, we obtain $n=\sum_{d \mid n} \phi\left(\frac{n}{d}\right)=\sum_{d \mid n} \phi(d)$. Applying Proposition 5, we get

$$
\phi(n)=\sum_{d \mid n} d \mu\left(\frac{n}{d}\right)
$$

which recovers the formula for ϕ that we deduced from the inclusion-exclusion principle.

