
Math 155 (Lecture 23)

October 30, 2011

Let S be a finite set, and let Part(S) denote the collection of all equivalence relations on S. Recall
that Part(S) has a least element E⊥ and a largest element E>. In the last lecture, we proved the following
formula for the Möbius function of Part(S):

Theorem 1. If S is a finite set with n elements, we have

µ(E⊥, E> = (−1)n−1(n− 1)!.

Let us now describe a typical application of this formula.

Question 2. Let S be a finite set. How many connected graphs are there with vertex set S?

There is an analogous question which is much easier to answer: the total number of (possibly discon-

nected) graphs with vertex set S is given by 2(n
2), where n is the number of elements of S. To turn this into

an answer to Question 2, we need to analyze the difference between connected and disconnected graphs.
Note that if G is a graph with vertex set S, then G determines an equivalence relation EG on S. Here

EG is the equivalence relation of “being in the same connected component of G”: that is, xEGy if and only
if there is a path in G joining x with y. Note that a graph G is connected if and only if EG = E> is the
largest element of Part(S).

Let X be the set of all graphs with vertex set S. For each equivalence relation E ∈ Part(S), define

XE = {G ∈ X : EG ≤ E} X(E) = {G ∈ X : EG = E}.

Note that XE =
⋃

E′≤E X(E′), so that

|XE | =
∑

E′≤E

|X(E′)|.

Applying Möbius inversion, we get

|X(E′)| =
∑

E≤E′

µ(E,E′)|XE |.

In particular, the number of connected graphs is given by∑
E∈Part(S)

µ(E,E>)|XE |.

Let us now evaluate each individual summand. Note that {E′ ∈ Part(S) : E ≤ E′} is isomorphic to the set
of equivalence relations on the set S/E. Using Theorem 1, we deduce

µ(E,E>) = (−1)|S/E|−1(|S/E| − 1)!.
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The size of the set |XE | is easy to determine: an element of XE is just a graph, each of whose connected
components is contained in an equivalence class of E. The number of such graphs is given by∏

K∈S/E

2(|K|
2 ).

We can therefore write the answer to Question 2 as∑
E∈Part(S)

(−1)|S/E|−1(|S/E| − 1)!2
∑

K∈S/E (|K|
2 )

We can do a little better by writing this as a sum not over equivalence relations, but over partitions
n = k1 + 2k2 + · · · , where n denotes the number of elements of S. Recall that the number of equivalence
relations with exactly ki equivalence classes of cardinality i is given by

n!∏
i≥1(i!kiki!)

We may therefore rewrite our answer as

n!
∑

n=k1+2k2+···

(−1)k−1(k − 1)!
∏
i≥1

(i!2(i
2))ki

ki!

where k denotes the sum k1 + k2 + · · · .

Remark 3. We have already studied another method of obtaining formulas like this. Let Y denote the
species of graphs and Y0 denote the species of connected graphs. Since every graph can be written uniquely
as a union of connected components, we have Y = exp(Y0). It follows that the exponential generating
functions of Y and Y0 are related by the formula

FY (x) = eFY0
(x).

We can write this as

FY0
(x) = log(FY (x)) = log

∑
n≥0

2(n
2)

n!
xn.

Applying the power series expansion for the logarithm to this, we can recover the same answer to Question
2.

Let’s now study another example of a Möbius function.

Example 4. Let Z>0 be the set of positive integers, partially ordered by divisibility. Then Z>0 is locally
finite (any divisor of n is ≤ n, so every positive integer has only finitely many divisors). Let us compute the
Möbiusfunction µZ>0 .

Fix an integer n > 0 with prime factorization n = pe11 p
e2
2 · · · p

ek
k . Let X ⊆ Z>0 be the set of divisors of

n: namely, those integers of the form
pf11 p

f2
2 · · · p

fk
k

where fi ≤ ei for 1 ≤ i ≤ k. As a partially ordered set, X can be identified with the product∏
1≤i≤k

{0, 1, . . . , ek}.
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Combining this with our understanding of the Möbius function of the factors, we see that the Möbius
function µX of X is given by

µX(
∏

pfii ,
∏

pgii ) =
∏

1≤i≤k


1 if fi = gi

−1 if fi = gi − 1

0 otherwise.

In other words, we ahve

µX(m,m′) =

{
(−1)j if m′

m is a product of j distinct primes.

0 otherwise.

Since µX is just given by the restriction of µZ>0
to X, we get

µZ>0
(m,n) =

{
(−1)j if n

m is a product of j distinct primes.

0 otherwise.

Note that the integer µZ>0(m,n) depends only on the quotient n
m . It is therefore traditional to rewrite

µZ>0 as a function one variable. Let us say that an integer n is square-free if it is not divisible by the square
of any prime. Define

µ(n) =

{
(−1)k if n = p1 · · · pk is square-free

0 otherwise.

We can then write

µZ>0
(m,n) =

{
µ( n

m ) if m|n
0 otherwise.

The function µ : Z>0 → Z constructed above often simply referred to as the Möbiusfunction. Applying
Möbius inversion in this context gives the following:

Proposition 5. Let f : Z>0 → Z be an arbitrary function, and define g : Z>0 → Z by the formula

g(n) =
∑
d|n

f(d).

Then we can recover f by the formula

f(n) =
∑
d|n

g(d)µ(
n

d
).

Example 6. Recall that Euler’s φ-function φ : Z>0 → Z assigns to each integer n the number of elements
of the set {1, 2, . . . , n} which are relatively prime to n. Set X = {1, 2, . . . , n}. For each d|n, let Xd denote
the set of all elements m ∈ X such that the greatest common divisor of m and n is d. The function m 7→ m

d
induces a bijection from Xd to the subset of {1, 2, . . . , nd } consisting of elements which are relatively prime
to n

d . We therefore have |Xd| = φ(n
d ). Since X is given by the disjoint union of the Xd’s, we obtain

n =
∑

d|n φ(n
d ) =

∑
d|n φ(d). Applying Proposition 5, we get

φ(n) =
∑
d|n

dµ(
n

d
),

which recovers the formula for φ that we deduced from the inclusion-exclusion principle.
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