
Math 155 (Lecture 23)

October 28, 2011

Definition 1. Let S be a finite set. We let Part(S) denote the set of all partitions of S: that is, the set
of all decompositions of S into nonempty disjoint subsets. In other words, Part(S) is the collection of all
equivalence relations E on S. If E is an equivalence relation on S, we denote the set of equivalence classes
by S/E.

We regard S as a partially ordered set as follows: we let E ≤ E′ if xEy implies xE′y. In other words,
E ≤ E′ if every equivalence class of E is contained in an equivalence class of E′.

Remark 2. The partially ordered set Part(S) has a least element E⊥, given by the discrete equivalence
relation where xE⊥y if and only if x = y. It also has a greatest element E>, given by the indiscrete
equivalence relation with xE>y for all x, y ∈ S.

Example 3. If S has cardinality 1, then Part(S) has exactly one element. If S = {1, 2}, then Part(S) has
two elements: the greatest element and the least element described in Remark 2. If S = {1, 2, 3}, then the
partially ordered set Part(S) is depicted in the diagram

{1, 2, 3}

{1}{2, 3}

88

{1, 3}{2}

OO

{1, 2}{3}

ff

{1}{2}{3}

ff OO 88

We would like to study the Möbius function µPart(S) of the partially ordered set Part(S) of partitions of
a finite set S. Suppose that E is equivalence relation on S. We let Part(S)≤E = {E′ ∈ Part(S) : E′ ≤ E}.
Write S as a disjoint union S1 ∪ S2 ∪ · · · ∪ Sm of E-equivalence classes. Note that to give an equivalence
relation E′ on S with E′ ≤ E, we just need to specify the restriction of E′ to each of the sets Si. In other
words, we have a canonical isomorphism of partially ordered sets

Part(S)≤E '
∏

Part(Si)

. This isomorphism carries E to the greatest element of the product
∏

1≤i≤m Part(Si). Using our product
formula for Möbius functions, we get

µPart(S)(E⊥, E) =
∏

1≤i≤m

µPart(Si)(E⊥, E>),

where E⊥ and E> denote the discrete and indiscrete equivalence relations of Remark 2 (note that underlying
set on which these equivalence relations reside depends on i).

Question 4. Let S be a set with n elements. What is the integer µPart(S)(E⊥, E>)?
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Example 5. If n = 1, then E⊥ = E> so the answer to Question 4 is 1. If n = 2, then E⊥ < E> with
nothing in between, so the answer to Question 4 is −1. If n = 3, then an inspection of the diagram of
Example 3 shows that there are three chains of length 2 from E⊥ to E>, and a chain of length 1. The answer
is therefore 3− 1 = 2.

Let us do one more example. Let S = {1, 2, 3, 4}. Let’s count the chains from E⊥ to E> in Part(S):

(a) There is exactly one chain of length 1, given by {E⊥, E>}.

(b) The chains of length 2 are exactly those of the form {E⊥ < E < E>}, where E is some element of
Part(S) distinct from E⊥ and E>. The number of chains is therefore b4 − 2, where b4 is the 4th Bell
number from Lecture 4. We have b4 = 15, so there are 13 such chains.

(c) The chains of length 3 have the form {E⊥ < E < E′ < E>}. Here E is necessarily an equivalence
relation which partitions S into a two element subset {i, j} and two singletons. There are

(
4
2

)
= 6

choices for E. Given E, there are three ways to build a larger equivalence relation E′ distinct from
E>: we can enlarge the equivalence class {i, j} by adding either of the two other elements, or we could
combine those two elements into another equivalence class. The number of such chains is therefore
3× 6 = 18.

(d) There are no chains of length ≥ 4.

It follows that µPart(S)(E⊥, E>) = −1 + 13− 18 = −6.

Motivated by the calculations
1,−1, 2,−6, . . .

of Example 5, we can make the following conjecture:

Guess 6. If S has n elements, then

µPart(S)(E⊥, E>) = (−1)n−1(n− 1)!.

Let’s prove that this guess is correct. We will use induction on n. We have already handled the case
n = 1, so assume that n > 1. The inductive hypothesis tells us the following: for every set T having
cardinality m < n, we have

µPart(T )(E⊥, E>) = (−1)m(m− 1)!.

In particular, if E < E> in Part(S), we have

µPart(S)(E⊥, E) =
∏

T∈S/E

µPart(T )(E⊥, E>) =
∏

T∈S/E

(−1)|T |−1(|T | − 1)!.

Since n > 1, we have E⊥ 6= E>, so that ∑
E∈Part(S)

µPart(S)(E⊥, E) = 0.

We can write this sum as

µPart(S)(E⊥, E>) +
∑

E 6=E>

∏
T∈S/E

(−1)|T |−1(|T | − 1)!.

To prove that µPart(S)(E⊥, E>) = (−1)n−1(n− 1)!, it will suffice to show that the sum∑
E∈Part(S)

∏
T∈S/E

(−1)|T |−1(|T | − 1)!
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is equal to zero.
Rather than proving this identity separately for each n, let us try to prove it for all n simultaneously.

Define
Cn =

∑
E∈Part(〈n〉)

∏
T∈〈n〉/E

(−1)|T |−1(|T | − 1)!

and let f(x) denote the generating function ∑
n≥0

(−1)nCn

n!
xn.

We wish to prove that Cn = 0 for n ≥ 2: that is, that f(x) is a linear function.

Let’s decompose Cn into pieces. Fix integers k1, k2, . . . with k1 + 2k2 + 3k3 + · · · = n, and let C
~k
n denote

the sum ∑
E

∏
T∈〈n〉/E

(−1)|T |−1(|T | − 1)!

where the sum is taken over all equivalence relations with k1 equivalences classes of size 1, k2 equivalence
classes of size 2, and so forth. Each term in the sum is identical, given by

∏
i≥1((−1)i−1(i − 1)!)ki . The

number of terms is given by the quotient
n!∏

(i!)kiki!
.

It follows that we can write

f(x) =
∑
n≥0

(−1)nxn

n!

∑
n=k1+2k2+···

n!∏
i≥1(i!kiki!)

∏
i≥1

(i− 1)!ki(−1)(i−1)ki

=
∑
n≥0

∑
n=k1+2k2+···

∏
i≥1

xiki(−1)ki

ikiki!

=
∏
i≥1

∑
k≥0

(
−xi

i
)k

1

k!

=
∏
i≥1

e
−xi

i

= e
∑

i≥1−
xi

i

= elog(1−x)

= 1− x.

which is a linear function, as desired.
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