Math 155 (Lecture 23)

October 28, 2011

Definition 1. Let S be a finite set. We let $\operatorname{Part}(S)$ denote the set of all partitions of S : that is, the set of all decompositions of S into nonempty disjoint subsets. In other words, $\operatorname{Part}(S)$ is the collection of all equivalence relations E on S. If E is an equivalence relation on S, we denote the set of equivalence classes by S / E.

We regard S as a partially ordered set as follows: we let $E \leq E^{\prime}$ if $x E y$ implies $x E^{\prime} y$. In other words, $E \leq E^{\prime}$ if every equivalence class of E is contained in an equivalence class of E^{\prime}.

Remark 2. The partially ordered set $\operatorname{Part}(S)$ has a least element E_{\perp}, given by the discrete equivalence relation where $x E_{\perp} y$ if and only if $x=y$. It also has a greatest element E_{\top}, given by the indiscrete equivalence relation with $x E_{\top} y$ for all $x, y \in S$.

Example 3. If S has cardinality 1, then $\operatorname{Part}(S)$ has exactly one element. If $S=\{1,2\}$, then $\operatorname{Part}(S)$ has two elements: the greatest element and the least element described in Remark 2. If $S=\{1,2,3\}$, then the partially ordered set $\operatorname{Part}(S)$ is depicted in the diagram

We would like to study the Möbius function $\mu_{\text {Part }(S)}$ of the partially ordered set $\operatorname{Part}(S)$ of partitions of a finite set S. Suppose that E is equivalence relation on S. We let $\operatorname{Part}(S)_{\leq E}=\left\{E^{\prime} \in \operatorname{Part}(S): E^{\prime} \leq E\right\}$. Write S as a disjoint union $S_{1} \cup S_{2} \cup \cdots \cup S_{m}$ of E-equivalence classes. Note that to give an equivalence relation E^{\prime} on S with $E^{\prime} \leq E$, we just need to specify the restriction of E^{\prime} to each of the sets S_{i}. In other words, we have a canonical isomorphism of partially ordered sets

$$
\operatorname{Part}(S)_{\leq E} \simeq \prod \operatorname{Part}\left(S_{i}\right)
$$

. This isomorphism carries E to the greatest element of the product $\prod_{1 \leq i \leq m} \operatorname{Part}\left(S_{i}\right)$. Using our product formula for Möbius functions, we get

$$
\mu_{\operatorname{Part}(S)}\left(E_{\perp}, E\right)=\prod_{1 \leq i \leq m} \mu_{\operatorname{Part}\left(S_{i}\right)}\left(E_{\perp}, E_{\top}\right)
$$

where E_{\perp} and E_{\top} denote the discrete and indiscrete equivalence relations of Remark 2 (note that underlying set on which these equivalence relations reside depends on i).

Question 4. Let S be a set with n elements. What is the integer $\mu_{\mathrm{Part}(S)}\left(E_{\perp}, E_{\top}\right)$?

Example 5. If $n=1$, then $E_{\perp}=E_{\top}$ so the answer to Question 4 is 1 . If $n=2$, then $E_{\perp}<E_{\top}$ with nothing in between, so the answer to Question 4 is -1 . If $n=3$, then an inspection of the diagram of Example 3 shows that there are three chains of length 2 from E_{\perp} to E_{\top}, and a chain of length 1 . The answer is therefore $3-1=2$.

Let us do one more example. Let $S=\{1,2,3,4\}$. Let's count the chains from E_{\perp} to E_{\top} in $\operatorname{Part}(S)$:
(a) There is exactly one chain of length 1 , given by $\left\{E_{\perp}, E_{\top}\right\}$.
(b) The chains of length 2 are exactly those of the form $\left\{E_{\perp}<E<E_{\top}\right\}$, where E is some element of $\operatorname{Part}(S)$ distinct from E_{\perp} and E_{\top}. The number of chains is therefore $b_{4}-2$, where b_{4} is the $4 t h$ Bell number from Lecture 4 . We have $b_{4}=15$, so there are 13 such chains.
(c) The chains of length 3 have the form $\left\{E_{\perp}<E<E^{\prime}<E_{\top}\right\}$. Here E is necessarily an equivalence relation which partitions S into a two element subset $\{i, j\}$ and two singletons. There are $\binom{4}{2}=6$ choices for E. Given E, there are three ways to build a larger equivalence relation E^{\prime} distinct from E_{\top} : we can enlarge the equivalence class $\{i, j\}$ by adding either of the two other elements, or we could combine those two elements into another equivalence class. The number of such chains is therefore $3 \times 6=18$.
(d) There are no chains of length ≥ 4.

It follows that $\mu_{\operatorname{Part}(S)}\left(E_{\perp}, E_{\top}\right)=-1+13-18=-6$.
Motivated by the calculations

$$
1,-1,2,-6, \ldots
$$

of Example 5, we can make the following conjecture:
Guess 6. If S has n elements, then

$$
\mu_{\operatorname{Part}(S)}\left(E_{\perp}, E_{\top}\right)=(-1)^{n-1}(n-1)!
$$

Let's prove that this guess is correct. We will use induction on n. We have already handled the case $n=1$, so assume that $n>1$. The inductive hypothesis tells us the following: for every set T having cardinality $m<n$, we have

$$
\mu_{\operatorname{Part}(T)}\left(E_{\perp}, E_{\top}\right)=(-1)^{m}(m-1)!
$$

In particular, if $E<E_{\top}$ in $\operatorname{Part}(S)$, we have

$$
\mu_{\operatorname{Part}(S)}\left(E_{\perp}, E\right)=\prod_{T \in S / E} \mu_{\operatorname{Part}(T)}\left(E_{\perp}, E_{\top}\right)=\prod_{T \in S / E}(-1)^{|T|-1}(|T|-1)!
$$

Since $n>1$, we have $E_{\perp} \neq E_{\top}$, so that

$$
\sum_{E \in \operatorname{Part}(S)} \mu_{\operatorname{Part}(S)}\left(E_{\perp}, E\right)=0
$$

We can write this sum as

$$
\mu_{\mathrm{Part}(S)}\left(E_{\perp}, E_{\top}\right)+\sum_{E \neq E_{\top}} \prod_{T \in S / E}(-1)^{|T|-1}(|T|-1)!
$$

To prove that $\mu \operatorname{Part}(S)\left(E_{\perp}, E_{\top}\right)=(-1)^{n-1}(n-1)$!, it will suffice to show that the sum

$$
\sum_{E \in \operatorname{Part}(S)} \prod_{T \in S / E}(-1)^{|T|-1}(|T|-1)!
$$

is equal to zero.
Rather than proving this identity separately for each n, let us try to prove it for all n simultaneously. Define

$$
C_{n}=\sum_{E \in \operatorname{Part}(\langle n\rangle)} \prod_{T \in\langle n\rangle / E}(-1)^{|T|-1}(|T|-1)!
$$

and let $f(x)$ denote the generating function

$$
\sum_{n \geq 0} \frac{(-1)^{n} C_{n}}{n!} x^{n}
$$

We wish to prove that $C_{n}=0$ for $n \geq 2$: that is, that $f(x)$ is a linear function.
Let's decompose C_{n} into pieces. Fix integers k_{1}, k_{2}, \ldots with $k_{1}+2 k_{2}+3 k_{3}+\cdots=n$, and let $C_{n}^{\vec{k}}$ denote the sum

$$
\sum_{E} \prod_{T \in\langle n\rangle / E}(-1)^{|T|-1}(|T|-1)!
$$

where the sum is taken over all equivalence relations with k_{1} equivalences classes of size $1, k_{2}$ equivalence classes of size 2 , and so forth. Each term in the sum is identical, given by $\prod_{i \geq 1}\left((-1)^{i-1}(i-1)^{!}\right)^{k_{i}}$. The number of terms is given by the quotient

$$
\frac{n!}{\prod(i!)^{k_{i}} k_{i}!} .
$$

It follows that we can write

$$
\begin{aligned}
f(x) & =\sum_{n \geq 0} \frac{(-1)^{n} x^{n}}{n!} \sum_{n=k_{1}+2 k_{2}+\cdots} \frac{n!}{\prod_{i \geq 1}\left(i!^{k_{i}} k_{i}!\right)} \prod_{i \geq 1}(i-1)!^{k_{i}}(-1)^{(i-1) k_{i}} \\
& =\sum_{n \geq 0} \sum_{n=k_{1}+2 k_{2}+\cdots} \prod_{i \geq 1} \frac{x^{i k_{i}}(-1)^{k_{i}}}{i^{k_{i} k_{i}!}} \\
& =\prod_{i \geq 1} \sum_{k \geq 0}\left(\frac{-x^{i}}{i}\right)^{k} \frac{1}{k!} \\
& =\prod_{i \geq 1} e^{\frac{-x^{i}}{i}} \\
& =e^{\sum_{i \geq 1}-\frac{x^{i}}{i}} \\
& =e^{\log (1-x)} \\
& =1-x .
\end{aligned}
$$

which is a linear function, as desired.

