Math 155 (Lecture 23)

October 28, 2011

Definition 1. Let S be a finite set. We let Part(S) denote the set of all partitions of S: that is, the set
of all decompositions of S into nonempty disjoint subsets. In other words, Part(S) is the collection of all
equivalence relations E on S. If F is an equivalence relation on S, we denote the set of equivalence classes
by S/E.

We regard S as a partially ordered set as follows: we let £ < E’ if x By implies xE'y. In other words,
E < E' if every equivalence class of E is contained in an equivalence class of E’.

Remark 2. The partially ordered set Part(S) has a least element E |, given by the discrete equivalence
relation where zF |y if and only if z = y. It also has a greatest element E+, given by the indiscrete
equivalence relation with xEty for all z,y € S.

Example 3. If S has cardinality 1, then Part(S) has exactly one element. If S = {1,2}, then Part(S) has
two elements: the greatest element and the least element described in Remark 2. If S = {1,2, 3}, then the
partially ordered set Part(S) is depicted in the diagram

{1,2,3}

RN

{13{2,3} {1,312} {1,2}{3}

~ ]

{13213}

We would like to study the Mébius function pipa,(g) of the partially ordered set Part(S) of partitions of
a finite set S. Suppose that E is equivalence relation on S. We let Part(S)<g = {E’ € Part(S) : E' < E}.
Write S as a disjoint union S; U Sy U --- U S, of E-equivalence classes. Note that to give an equivalence
relation E/ on S with F/ < E, we just need to specify the restriction of E’ to each of the sets S;. In other
words, we have a canonical isomorphism of partially ordered sets

Part(S)SE ~ H Part(Sl)

. This isomorphism carries E to the greatest element of the product [[,.,.,, Part(S;). Using our product
formula for Mébius functions, we get o

Ppart(s)(EL, E) = H Kpart(s:) (EL, ET),

1<i<m

where E| and ET denote the discrete and indiscrete equivalence relations of Remark 2 (note that underlying
set on which these equivalence relations reside depends on ).

Question 4. Let S be a set with n elements. What is the integer ppa(s)(EL, ET)7



Example 5. If n = 1, then E| = Et so the answer to Question 4 is 1. If n = 2, then F, < Et with
nothing in between, so the answer to Question 4 is —1. If n = 3, then an inspection of the diagram of
Example 3 shows that there are three chains of length 2 from E,; to Ev, and a chain of length 1. The answer
is therefore 3 — 1 = 2.

Let us do one more example. Let S = {1,2,3,4}. Let’s count the chains from F, to ET in Part(S):

(a) There is exactly one chain of length 1, given by {E, ET}.

(b) The chains of length 2 are exactly those of the form {F, < E < Ev}, where E is some element of
Part(S) distinct from E; and E+. The number of chains is therefore by — 2, where by is the 4th Bell
number from Lecture 4. We have by = 15, so there are 13 such chains.

(¢) The chains of length 3 have the form {E, < F < E’ < Ev}. Here F is necessarily an equivalence
relation which partitions S into a two element subset {i,7} and two singletons. There are (;1) =6
choices for E. Given E, there are three ways to build a larger equivalence relation E’ distinct from
E+: we can enlarge the equivalence class {i,j} by adding either of the two other elements, or we could
combine those two elements into another equivalence class. The number of such chains is therefore
3 x6=18.

(d) There are no chains of length > 4.
It follows that ipare(s)(EL, BT) = —1413 — 18 = —6.

Motivated by the calculations
1,-1,2,-6,...

of Example 5, we can make the following conjecture:

Guess 6. If S has n elements, then

ppary(s) (B, Br) = (—=1)" Hn— 1)L

Let’s prove that this guess is correct. We will use induction on n. We have already handled the case
n = 1, so assume that n > 1. The inductive hypothesis tells us the following: for every set T' having
cardinality m < n, we have

ppary(r) (EL, BT) = (=1)"(m — 1)L
In particular, if E < E in Part(S), we have

HPart(S) ELv H HPart(T ELaET) H (_1)|T|_1(‘T| _1)'
TeS/E TeS/E

Since n > 1, we have E| # E7, so that

Z HPart(S) (Ela E) =0.
EePart(S)

We can write this sum as

Ppar(s)(EL, E1) + Z H DIT=r(|T| = 1.

E#ET TeS/E

To prove that pPart(S)(EL, E1) = (—1)""!(n — 1)!, it will suffice to show that the sum

> II »"=t(z -1y

EcPart(S) TeS/E



is equal to zero.
Rather than proving this identity separately for each n, let us try to prove it for all n simultaneously.

Define
Co= > I v"='qr -

EcPart((n)) Te(n)/E

and let f(z) denote the generating function
3 (=1)"Cn
n!

We wish to prove that C,, = 0 for n > 2: that is, that f(x) is a linear function.

Let’s decompose C,, into pieces. Fix integers ki, ks, ... with k1 4+ 2ko + 3k3 +--- = n, and let C’E denote
the sum
> II o=qr -1y
E Te(n)/E

where the sum is taken over all equivalence relations with k; equivalences classes of size 1, ko equivalence
classes of size 2, and so forth. Each term in the sum is identical, given by [[,-,((—1)*"1(i — 1)")¥. The

number of terms is given by the quotient
n!

[T(Nki k1
It follows that we can write

i>1 >1

n>0 : n= k1+2k2+

= j{: fi: II ﬂckl

n>0n=ki+2ko+---1>1

= X

i>1 k>0

g
i
i>1
i
— 621‘21 7IT
elog(l—:c)
= 1—u

which is a linear function, as desired.



