
Math 155 (Lecture 22)

October 25, 2011

In this lecture, we will continue to study the Möbius function µ associated to a partially ordered set A.
Our first goal is to understand how recover the Möbius function of a complicated partially ordered set in
terms of the Möbiusfunction of simpler constituents.

Definition 1. Let (A,≤A) and (B,≤B) be two partially ordered sets. Then the product A × B inherits a
partial ordering, where we write

(a, b) ≤ (a′, b′)

if and only if a ≤A a′ and b ≤B b′.

Proposition 2. Let A and B be finite partially ordered sets, with Möbius functions µA and µB. Then the
Möbius function of A×B is given by the formula

µ((a, b), (a′, b′)) = µA(a, a′)µB(b, b′).

Proof. As in the proof of Theorem ??, it suffices to show that the matrix

[µA(a, a′)µB(b, b′)](a,b),(a′,b′)∈A×B

is an inverse to the incidence matrix for the partially ordered set A×B. Unwinding the definitions, we must
show that for a, a′′ ∈ A and b, b′′ ∈ B, the sum∑

a′≥Aa,b′≥Bb

µA(a′, a′′)µB(b′, b′′)

is equal to one if (a, b) = (a′′, b′′), and zero otherwise. By the distributive law, this sum is given by

(
∑

a′≥Aa

µA(a′, a′′))(
∑

b′≥Bb

µB(b′, b′′)).

Using the defining properties of µA and µB , we can write this as

(

{
1 if a = a′′

0 otherwise.
)(

{
1 if b = b′′

0 otherwise.
)

which is 1 if (a, b) = (a′′, b′′), and 0 otherwise.

Example 3. Let S be a finite set with n elements, and let P (S) be the collection of all subsets of S, ordered
by inclusion. Then P (S) can be identified with the product∏

s∈S
{0 < 1}
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of n copies of the partially ordered set A = {0 < 1}. We have seen that the Möbius function µA of A is
given by

µA(i, j) =


1 if i = j

−1 if i < j

0 if i > j.

Applying Proposition 2 repeatedly, we deduce that the Möbius function of P (S) is given by

µP (S)(I, J) =

{
(−1)|J−I| if I ⊆ J
0 otherwise.

Definition 4. Let (A,≤) be a partially ordered set. We can define a new partial ordering ≤′ on A as follows:

(a ≤′ b)⇔ (b ≤ a)

We will refer to the partial ordering ≤′ as the opposite of the original partial ordering ≤. We let Aop denote
A, equipped with the opposite ordering.

Remark 5. If we understand the Möbius function µA of a partially ordered set A, it is easy to describe the
Möbius function of its opposite Aop. Namely, we have

µAop(a, b) = µA(b, a).

Now let S = {1, . . . , n} and let A be the opposite of the partially ordered set P (S) (so that sets are
ordered by reverse inclusion). Then the Möbius function of A is given by

µ(I, J) =

{
(−1)|I−J| if I ⊇ J
∅ otherwise.

From this, we can recover the inclusion-exclusion principle. Let X be a finite set, equipped with subsets
X1, X2, . . . , Xn ⊆ X. For J ⊆ {1, . . . , n}, we set

XJ =
⋂
i∈J

Xi X(J) = (
⋂
i∈J

Xi) ∩ (
⋂
i/∈J

(X −Xi))

Then |XJ | =
∑

K⊇J |X(J)|. Applying Möbius inversion, we get

|X(J)| =
∑

K⊆{1,...,n}

µ(K,J)|XK | =
∑
K⊇J

(−1)|K−J||XK |.

In particular, if we take the set J to be empty, we recover the formula

|X −
⋃

1≤i≤n

Xi| =
∑

K⊆{1,...,n}

(−1)|K||XK |.

So far, we have discussed Möbiusinversion in the context of finite partially ordered sets. However, it is
convenient to consider a mild generalization.

Definition 6. Let A be a partially ordered set. We will say that A is locally finite if, for every element
a ∈ A, the set A≤a = {b ∈ A : b ≤ a} is finite.

Let A be a locally finite partially ordered set. For any pair of elements a, b ∈ A, there are only finitely
many chains which start at a and end at b (because every such chain is contained in the finite partially
ordered set A≤b). Consequently, we can still define the Möbiusfunction µ : A×A→ Z by the formula

µ(a, b) =
∑
C

(−1)l(C),

where the sum is taken over all chains from a to b.
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Proposition 7. Let A be a locally finite partially ordered set, and let f : A→ Z be any function. Define a
new function g : A→ Z by the formula

g(b) =
∑
a≤b

f(a).

Then we can recover f by the formula

f(b) =
∑
a

µ(a, b)f(a).

(Note that this sum is well-defined, since µ(a, b) = 0 unless a belongs to the finite set A≤b).

Proof. The general formula can be reduced to the case of finite partially ordered sets as follows. Fix an
element b ∈ A, and let µ′ : A≤b×A≤b → Z be the restriction of µ. Then µ′ agrees with the Möbius function
for the finite partially ordered set A≤b (note that if C is a chain from a to a′ in A≤b, then C must be entirely
contained in A≤b). Similarly let f ′, g′ : A≤b → Z be the restrictions of f and g. These functions satisfy

g′(c) =
∑
a≤c

f ′(a),

so that
f ′(c) =

∑
a∈A≤b

µ′(a, c)g′(a) =
∑
a≤c

µ′(a, c)g′(a).

Taking c = b, we recover the formula

f(b) =
∑
a≤b

µ(a, b)g(a).

Example 8. Let Z>0 be the set of positive integers, partially ordered by divisibility. Then Z>0 is locally
finite (any divisor of n is ≤ n, so every positive integer has only finitely many divisors). Let us compute the
Möbiusfunction µZ>0 .

Fix an integer n > 0 with prime factorization n = pe11 p
e2
2 · · · p

ek
k . Let X ⊆ Z>0 be the set of divisors of

n: namely, those integers of the form
pf11 p

f2
2 · · · p

fk
k

where fi ≤ ei for 1 ≤ i ≤ k. As a partially ordered set, X can be identified with the product∏
1≤i≤k

{0, 1, . . . , ek}.

Combining Proposition 2 with our understanding of the Möbius function of the factors, we see that the
Möbius function µX of X is given by

µX(
∏

pfii ,
∏

pgii ) =
∏

1≤i≤k


1 if fi = gi

−1 if fi = gi − 1

0 otherwise.

In other words, we ahve

µX(m,m′) =

{
(−1)j if m′

m is a product of j distinct primes.

0 otherwise.
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Since µX is just given by the restriction of µZ>0
to X, we get

µZ>0
(m,n) =

{
(−1)j if n

m is a product of j distinct primes.

0 otherwise.

Note that the integer µZ>0(m,n) depends only on the quotient n
m . It is therefore traditional to rewrite

µZ>0
as a function one variable. Let us say that an integer n is square-free if it is not divisible by the square

of any prime. Define

µ(n) =

{
(−1)k if n = p1 · · · pk is square-free

0 otherwise.

We can then write

µZ>0
(m,n) =

{
µ( n

m ) if m|n
0 otherwise.

The function µ : Z>0 → Z constructed above often simply referred to as the Möbiusfunction. Applying
Möbius inversion in this context gives the following:

Proposition 9. Let f : Z>0 → Z be an arbitrary function, and define g : Z>0 → Z by the formula

g(n) =
∑
d|n

f(d).

Then we can recover f by the formula

f(n) =
∑
d|n

g(d)µ(
n

d
).

Example 10. Recall that Euler’s φ-function φ : Z>0 → Z assigns to each integer n the number of elements
of the set {1, 2, . . . , n} which are relatively prime to n. Set X = {1, 2, . . . , n}. For each d|n, let Xd denote
the set of all elements m ∈ X such that the greatest common divisor of m and n is d. The function m 7→ m

d
induces a bijection from Xd to the subset of {1, 2, . . . , nd } consisting of elements which are relatively prime
to n

d . We therefore have |Xd| = φ(n
d ). Since X is given by the disjoint union of the Xd’s, we obtain

n =
∑

d|n φ(n
d ) =

∑
d|n φ(d). Applying Proposition 9, we get

φ(n) =
∑
d|n

dµ(
n

d
),

which recovers the formula for φ that we deduced from the inclusion-exclusion principle.
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