Math 155 (Lecture 22)

October 25, 2011

In this lecture, we will continue to study the Mobius function p associated to a partially ordered set A.
Our first goal is to understand how recover the Mobius function of a complicated partially ordered set in
terms of the Mobiusfunction of simpler constituents.

Definition 1. Let (A4,<4) and (B, <p) be two partially ordered sets. Then the product A x B inherits a
partial ordering, where we write
(a,0) < (a’,¥)

ifand only if a <4 @’ and b <p ¥V'.

Proposition 2. Let A and B be finite partially ordered sets, with Mdébius functions pa and pg. Then the
Mdbius function of A X B is given by the formula

:u((a" b)v (CLI, bl)) = ,LLA(Cl, a/):uB(b’ b/)

Proof. As in the proof of Theorem ?7?, it suffices to show that the matrix

[ala, a")p(b,0")](ab) (@ b)caxB

is an inverse to the incidence matrix for the partially ordered set A x B. Unwinding the definitions, we must
show that for a,a” € A and b, € B, the sum

Z HA (Cl/, a”)MB (b/a b/l)

a’'>4a,b'>pb

is equal to one if (a,b) = (a”,b"), and zero otherwise. By the distributive law, this sum is given by

(3 wal@a DY us®,b").

a’'>aa b'>Bb

Using the defining properties of u4 and pup, we can write this as
( 1 ifa=a" ) 1 ifb=0" )
0 otherwise. 0 otherwise.
which is 1 if (a,b) = (a”,b"), and 0 otherwise. O

Example 3. Let S be a finite set with n elements, and let P(S) be the collection of all subsets of S, ordered
by inclusion. Then P(S) can be identified with the product

H{O<1}

ses



of n copies of the partially ordered set A = {0 < 1}. We have seen that the M&bius function ps of A is
given by

1 ifi=j
pali,j) =< -1 ifi<jy
0 ifi>j.

Applying Proposition 2 repeatedly, we deduce that the Mobius function of P(S) is given by

(=)= ifrc g

0 otherwise.

MP(S)(LJ)Z{

Definition 4. Let (A, <) be a partially ordered set. We can define a new partial ordering <’ on A as follows:
(a<'b) = (b<a)

We will refer to the partial ordering <’ as the opposite of the original partial ordering <. We let A°P? denote

A, equipped with the opposite ordering.

Remark 5. If we understand the Mobius function 4 of a partially ordered set A, it is easy to describe the
Moébius function of its opposite A°P. Namely, we have

taoe(a,b) = pa(b,a).
Now let S = {1,...,n} and let A be the opposite of the partially ordered set P(S) (so that sets are
ordered by reverse inclusion). Then the Mobius function of A is given by
(- Sf 1o T
0 otherwise.

u(l, J) :{

From this, we can recover the inclusion-exclusion principle. Let X be a finite set, equipped with subsets
X1, Xo,..., X, CX. For JC{1,...,n}, we set

X;=X: X =" X)n (X -X)

ieJ ieJ i¢J

Then |X;| =3 x5, |X(J)|. Applying Mobius inversion, we get
IX(DI= Y wlE DXkl =Y ()X,

KC{1,...,n} K2J

In particular, if we take the set J to be empty, we recover the formula
x- U xil= > ()"|xgl|
1<i<n KC{l,..,n}

So far, we have discussed M6biusinversion in the context of finite partially ordered sets. However, it is
convenient to consider a mild generalization.

Definition 6. Let A be a partially ordered set. We will say that A is locally finite if, for every element
a € A, the set A<, = {b€ A:b<a} is finite.

Let A be a locally finite partially ordered set. For any pair of elements a,b € A, there are only finitely
many chains which start at a and end at b (because every such chain is contained in the finite partially
ordered set A<p). Consequently, we can still define the Mdbiusfunction p : A x A — Z by the formula

pla,0) = (=),
C

where the sum is taken over all chains from a to b.



Proposition 7. Let A be a locally finite partially ordered set, and let f: A — Z be any function. Define a
new function g : A — Z by the formula

g(b) =) f(a).

a<b

Then we can recover f by the formula
F®) = n(a,b)f(a).

(Note that this sum is well-defined, since p(a,b) = 0 unless a belongs to the finite set A<y).

Proof. The general formula can be reduced to the case of finite partially ordered sets as follows. Fix an
element b € A, and let ¢/ : A<y x A<y — Z be the restriction of p. Then p agrees with the Mébius function
for the finite partially ordered set A<, (note that if C is a chain from a to o’ in A<;, then C' must be entirely
contained in A<p). Similarly let f’, ¢’ : A<y — Z be the restrictions of f and g. These functions satisfy

g =Y fla),

a<c

so that

file)="Y Ha.o)g'(a)=2 p'ac)g ().

a€A<y a<c

Taking ¢ = b, we recover the formula
F®) = p(a,b)g(a).
a<b
O

Example 8. Let Z-( be the set of positive integers, partially ordered by divisibility. Then Z~¢ is locally
finite (any divisor of n is < n, so every positive integer has only finitely many divisors). Let us compute the
Mbobiusfunction pz_, .
Fix an integer n > 0 with prime factorization n = p{'p5* - --p*. Let X C Z- be the set of divisors of
n: namely, those integers of the form
p{1p£2 . 'p'l):k
where f; < e; for 1 < i < k. As a partially ordered set, X can be identified with the product

IT 0.1, e}

1<i<k

Combining Proposition 2 with our understanding of the Mobius function of the factors, we see that the
Mobius function px of X is given by

1 if fi =g
px([ el It = I §-1 iffi=gi—1
1<i<k | otherwise.

In other words, we ahve

, (=1)7  if ™ is a product of j distinct primes.
px (m,m') = mo
otherwise.



Since px is just given by the restriction of pz_, to X, we get

(-1)7 if - is a product of j distinct primes.

HZq (ma n) = {

0 otherwise.

Note that the integer uz.,(m,n) depends only on the quotient X. It is therefore traditional to rewrite
Mz, as a function one variable. Let us say that an integer n is square-free if it is not divisible by the square
of any prime. Define

(—=1)F if n = py---py is square-free
0 otherwise.

We can then write

(m,n) = JHG) iEmin
Hzoo M= otherwise.

The function p : Z~sg — Z constructed above often simply referred to as the Mébiusfunction. Applying
Mobius inversion in this context gives the following:

Proposition 9. Let [ : Z~q — Z be an arbitrary function, and define g : Z~g — Z by the formula

g(n) =Y f(d).

d|n

Then we can recover f by the formula

f(n) =Y g(dn():

d|n

Example 10. Recall that Euler’s ¢-function ¢ : Z~y — Z assigns to each integer n the number of elements
of the set {1,2,...,n} which are relatively prime to n. Set X = {1,2,...,n}. For each d|n, let X, denote
the set of all elements m € X such that the greatest common divisor of m and n is d. The function m — =
induces a bijection from X, to the subset of {1,2,..., 5} consisting of elements which are relatively prime
to 5. We therefore have |X4| = #(%). Since X is given by the disjoint union of the X ’s, we obtain

d
n= Zd‘n ¢(5) = Zd‘n ¢(d). Applying Proposition 9, we get

¢(n) = Zdu(%h

d|n

which recovers the formula for ¢ that we deduced from the inclusion-exclusion principle.



