Math 155 (Lecture 22)

October 25, 2011

In this lecture, we will continue to study the Möbius function μ associated to a partially ordered set A. Our first goal is to understand how recover the Möbius function of a complicated partially ordered set in terms of the Möbiusfunction of simpler constituents.

Definition 1. Let $\left(A, \leq_{A}\right)$ and $\left(B, \leq_{B}\right)$ be two partially ordered sets. Then the product $A \times B$ inherits a partial ordering, where we write

$$
(a, b) \leq\left(a^{\prime}, b^{\prime}\right)
$$

if and only if $a \leq_{A} a^{\prime}$ and $b \leq_{B} b^{\prime}$.
Proposition 2. Let A and B be finite partially ordered sets, with Möbius functions μ_{A} and μ_{B}. Then the Möbius function of $A \times B$ is given by the formula

$$
\mu\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)=\mu_{A}\left(a, a^{\prime}\right) \mu_{B}\left(b, b^{\prime}\right)
$$

Proof. As in the proof of Theorem ??, it suffices to show that the matrix

$$
\left[\mu_{A}\left(a, a^{\prime}\right) \mu_{B}\left(b, b^{\prime}\right)\right]_{(a, b),\left(a^{\prime}, b^{\prime}\right) \in A \times B}
$$

is an inverse to the incidence matrix for the partially ordered set $A \times B$. Unwinding the definitions, we must show that for $a, a^{\prime \prime} \in A$ and $b, b^{\prime \prime} \in B$, the sum

$$
\sum_{a^{\prime} \geq_{A} a, b^{\prime} \geq_{B} b} \mu_{A}\left(a^{\prime}, a^{\prime \prime}\right) \mu_{B}\left(b^{\prime}, b^{\prime \prime}\right)
$$

is equal to one if $(a, b)=\left(a^{\prime \prime}, b^{\prime \prime}\right)$, and zero otherwise. By the distributive law, this sum is given by

$$
\left(\sum_{a^{\prime} \geq_{A} a} \mu_{A}\left(a^{\prime}, a^{\prime \prime}\right)\right)\left(\sum_{b^{\prime} \geq_{B} b} \mu_{B}\left(b^{\prime}, b^{\prime \prime}\right)\right) .
$$

Using the defining properties of μ_{A} and μ_{B}, we can write this as

$$
\left(\{ \begin{array} { l l }
{ 1 } & { \text { if } a = a ^ { \prime \prime } } \\
{ 0 } & { \text { otherwise } }
\end{array}) \left(\left\{\begin{array}{ll}
1 & \text { if } b=b^{\prime \prime} \\
0 & \text { otherwise }
\end{array}\right)\right.\right.
$$

which is 1 if $(a, b)=\left(a^{\prime \prime}, b^{\prime \prime}\right)$, and 0 otherwise.
Example 3. Let S be a finite set with n elements, and let $P(S)$ be the collection of all subsets of S, ordered by inclusion. Then $P(S)$ can be identified with the product

$$
\prod_{s \in S}\{0<1\}
$$

of n copies of the partially ordered set $A=\{0<1\}$. We have seen that the Möbius function μ_{A} of A is given by

$$
\mu_{A}(i, j)= \begin{cases}1 & \text { if } i=j \\ -1 & \text { if } i<j \\ 0 & \text { if } i>j\end{cases}
$$

Applying Proposition 2 repeatedly, we deduce that the Möbius function of $P(S)$ is given by

$$
\mu_{P(S)}(I, J)= \begin{cases}(-1)^{|J-I|} & \text { if } I \subseteq J \\ 0 & \text { otherwise }\end{cases}
$$

Definition 4. Let (A, \leq) be a partially ordered set. We can define a new partial ordering \leq^{\prime} on A as follows:

$$
\left(a \leq^{\prime} b\right) \Leftrightarrow(b \leq a)
$$

We will refer to the partial ordering \leq^{\prime} as the opposite of the original partial ordering \leq. We let $A^{o p}$ denote A, equipped with the opposite ordering.
Remark 5. If we understand the Möbius function μ_{A} of a partially ordered set A, it is easy to describe the Möbius function of its opposite $A^{o p}$. Namely, we have

$$
\mu_{A^{o p}}(a, b)=\mu_{A}(b, a)
$$

Now let $S=\{1, \ldots, n\}$ and let A be the opposite of the partially ordered set $P(S)$ (so that sets are ordered by reverse inclusion). Then the Möbius function of A is given by

$$
\mu(I, J)=\left\{\begin{array}{lc}
(-1)^{|I-J|} & \text { if } I \supseteq J \\
\emptyset & \text { otherwise }
\end{array}\right.
$$

From this, we can recover the inclusion-exclusion principle. Let X be a finite set, equipped with subsets $X_{1}, X_{2}, \ldots, X_{n} \subseteq X$. For $J \subseteq\{1, \ldots, n\}$, we set

$$
X_{J}=\bigcap_{i \in J} X_{i} \quad X(J)=\left(\bigcap_{i \in J} X_{i}\right) \cap\left(\bigcap_{i \notin J}\left(X-X_{i}\right)\right)
$$

Then $\left|X_{J}\right|=\sum_{K \supseteq J}|X(J)|$. Applying Möbius inversion, we get

$$
|X(J)|=\sum_{K \subseteq\{1, \ldots, n\}} \mu(K, J)\left|X_{K}\right|=\sum_{K \supseteq J}(-1)^{|K-J|}\left|X_{K}\right|
$$

In particular, if we take the set J to be empty, we recover the formula

$$
\left|X-\bigcup_{1 \leq i \leq n} X_{i}\right|=\sum_{K \subseteq\{1, \ldots, n\}}(-1)^{|K|}\left|X_{K}\right|
$$

So far, we have discussed Möbiusinversion in the context of finite partially ordered sets. However, it is convenient to consider a mild generalization.
Definition 6. Let A be a partially ordered set. We will say that A is locally finite if, for every element $a \in A$, the set $A_{\leq a}=\{b \in A: b \leq a\}$ is finite.

Let A be a locally finite partially ordered set. For any pair of elements $a, b \in A$, there are only finitely many chains which start at a and end at b (because every such chain is contained in the finite partially ordered set $A_{\leq b}$). Consequently, we can still define the Möbiusfunction $\mu: A \times A \rightarrow \mathbf{Z}$ by the formula

$$
\mu(a, b)=\sum_{C}(-1)^{l(C)}
$$

where the sum is taken over all chains from a to b.

Proposition 7. Let A be a locally finite partially ordered set, and let $f: A \rightarrow \mathbf{Z}$ be any function. Define a new function $g: A \rightarrow \mathbf{Z}$ by the formula

$$
g(b)=\sum_{a \leq b} f(a)
$$

Then we can recover f by the formula

$$
f(b)=\sum_{a} \mu(a, b) f(a)
$$

(Note that this sum is well-defined, since $\mu(a, b)=0$ unless a belongs to the finite set $A_{\leq b}$).
Proof. The general formula can be reduced to the case of finite partially ordered sets as follows. Fix an element $b \in A$, and let $\mu^{\prime}: A_{\leq b} \times A_{\leq b} \rightarrow \mathbf{Z}$ be the restriction of μ. Then μ^{\prime} agrees with the Möbius function for the finite partially ordered set $A_{\leq b}$ (note that if C is a chain from a to a^{\prime} in $A_{\leq b}$, then C must be entirely contained in $A_{\leq b}$. Similarly let $f^{\prime}, g^{\prime}: A_{\leq b} \rightarrow \mathbf{Z}$ be the restrictions of f and g. These functions satisfy

$$
g^{\prime}(c)=\sum_{a \leq c} f^{\prime}(a)
$$

so that

$$
f^{\prime}(c)=\sum_{a \in A_{\leq b}} \mu^{\prime}(a, c) g^{\prime}(a)=\sum_{a \leq c} \mu^{\prime}(a, c) g^{\prime}(a)
$$

Taking $c=b$, we recover the formula

$$
f(b)=\sum_{a \leq b} \mu(a, b) g(a)
$$

Example 8. Let $\mathbf{Z}_{>0}$ be the set of positive integers, partially ordered by divisibility. Then $\mathbf{Z}_{>0}$ is locally finite (any divisor of n is $\leq n$, so every positive integer has only finitely many divisors). Let us compute the Möbiusfunction $\mu_{\mathbf{Z}_{>0}}$.

Fix an integer $n>0$ with prime factorization $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$. Let $X \subseteq \mathbf{Z}_{>0}$ be the set of divisors of n : namely, those integers of the form

$$
p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}
$$

where $f_{i} \leq e_{i}$ for $1 \leq i \leq k$. As a partially ordered set, X can be identified with the product

$$
\prod_{1 \leq i \leq k}\left\{0,1, \ldots, e_{k}\right\}
$$

Combining Proposition 2 with our understanding of the Möbius function of the factors, we see that the Möbius function μ_{X} of X is given by

$$
\mu_{X}\left(\prod p_{i}^{f_{i}}, \prod p_{i}^{g_{i}}\right)=\prod_{1 \leq i \leq k} \begin{cases}1 & \text { if } f_{i}=g_{i} \\ -1 & \text { if } f_{i}=g_{i}-1 \\ 0 & \text { otherwise }\end{cases}
$$

In other words, we ahve

$$
\mu_{X}\left(m, m^{\prime}\right)= \begin{cases}(-1)^{j} & \text { if } \frac{m^{\prime}}{m} \text { is a product of } j \text { distinct primes. } \\ 0 & \text { otherwise. }\end{cases}
$$

Since μ_{X} is just given by the restriction of $\mu_{\mathbf{z}_{>0}}$ to X, we get

$$
\mu_{\mathbf{Z}_{>0}}(m, n)= \begin{cases}(-1)^{j} & \text { if } \frac{n}{m} \text { is a product of } j \text { distinct primes } \\ 0 & \text { otherwise } .\end{cases}
$$

Note that the integer $\mu_{\mathbf{Z}_{>0}}(m, n)$ depends only on the quotient $\frac{n}{m}$. It is therefore traditional to rewrite $\mu_{\mathbf{Z}_{>0}}$ as a function one variable. Let us say that an integer n is square-free if it is not divisible by the square of any prime. Define

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \cdots p_{k} \text { is square-free } \\ 0 & \text { otherwise }\end{cases}
$$

We can then write

$$
\mu_{\mathbf{Z}_{>0}}(m, n)= \begin{cases}\mu\left(\frac{n}{m}\right) & \text { if } m \mid n \\ 0 & \text { otherwise }\end{cases}
$$

The function $\mu: \mathbf{Z}_{>0} \rightarrow \mathbf{Z}$ constructed above often simply referred to as the Möbiusfunction. Applying Möbius inversion in this context gives the following:

Proposition 9. Let $f: \mathbf{Z}_{>0} \rightarrow \mathbf{Z}$ be an arbitrary function, and define $g: \mathbf{Z}_{>0} \rightarrow \mathbf{Z}$ by the formula

$$
g(n)=\sum_{d \mid n} f(d)
$$

Then we can recover f by the formula

$$
f(n)=\sum_{d \mid n} g(d) \mu\left(\frac{n}{d}\right)
$$

Example 10. Recall that Euler's ϕ-function $\phi: \mathbf{Z}_{>0} \rightarrow \mathbf{Z}$ assigns to each integer n the number of elements of the set $\{1,2, \ldots, n\}$ which are relatively prime to n. Set $X=\{1,2, \ldots, n\}$. For each $d \mid n$, let X_{d} denote the set of all elements $m \in X$ such that the greatest common divisor of m and n is d. The function $m \mapsto \frac{m}{d}$ induces a bijection from X_{d} to the subset of $\left\{1,2, \ldots, \frac{n}{d}\right\}$ consisting of elements which are relatively prime to $\frac{n}{d}$. We therefore have $\left|X_{d}\right|=\phi\left(\frac{n}{d}\right)$. Since X is given by the disjoint union of the X_{d} 's, we obtain $n=\sum_{d \mid n} \phi\left(\frac{n}{d}\right)=\sum_{d \mid n} \phi(d)$. Applying Proposition 9, we get

$$
\phi(n)=\sum_{d \mid n} d \mu\left(\frac{n}{d}\right)
$$

which recovers the formula for ϕ that we deduced from the inclusion-exclusion principle.

