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Let A be a finite partially ordered set. The incidence matrix of A is the square matrix I = [ia,b]a,b∈A,
where

ia,b =

{
1 if a ≤ b
0 otherwise.

In the last lecture, we introduced the Möbius function of A. This is a function

µ : A×A→ Z

with the following property: the matrix [µ(a, b)]a,b∈A is an inverse of the incidence matrix I
Our first goal in this lecture is to give a more explicit description of the function µ. First, let us introduce

a bit of notation.

Notation 1. Let A be a partially ordered set containing elements a, b ∈ A. We let Xa,b denote the set of
all chains C ⊆ A containing a as a least element and b as a greatest element. In this case, we can write
C = {a = x0 < x1 < · · · < xk = b}. We will refer to k as the length of C and denote it by l(C), so that
l(C) = |C| − 1.

Theorem 2. Let A be a finite partially ordered set. The Möbius function µ : A × A → Z is given by the
formula

µ(a, b) =
∑

C∈Xa,b

(−1)l(C).

Proof. Define λ(a, b) =
∑

C∈Xa,b
(−1)l(C). To prove that λ = µ, it will suffice to show that the matrix

M = [λ(a, b)]a,b∈A is an inverse of the incidence matrix I. Since I is invertible, it will suffice to show that
MI is the identity matrix. Unwinding the definitions, we must show that for a, c ∈ A, the sum

∑
b∈A

λ(b, c)

{
1 ifa ≤ b
0 otherwise.

is 1 if a = c and zero otherwise. In other words, we wish to show

∑
b≥a

λ(b, c) =

{
1 if a = c

0 if a 6= c.

Invoking the definition of λb,c, we can rewrite the right hand side as∑
b≥a

∑
C∈Xb,c

(−1)l(C).

This can be written as ∑
C∈Ya,c

(−1)l(C),
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where Ya,c denotes the collection of all chains in A whose largest element is equal to c, and whose smallest
element is ≥ a.

If a = c, then Ya,c contains only a single chain C = {c} of length 0, so this sum is equal to 1. Let us
therefore assume that a 6= c, and prove that the sum is equal to zero. We divide the set Ya,c into two parts:
let Y+ ⊆ Ya,c be the collection of those chains which contain a, and let Y− be the collection of those chains
which do not. The construction C 7→ C ∪ {a} determines a bijection from Y− to Y+ (the inverse bijection is
given by C 7→ C − {a}). We can therefore write∑

C∈Ya,c

(−1)l(C) =
∑

C∈Y−

(−1)l(C) +
∑

C∈Y−

(−1)l(C∪{a}).

On the right hand side, we can cancel the relevant terms pairwise to obtain 0.

Corollary 3. Let A be a finite partially ordered set and µ its Möbius function. Then µ has the following
properties:

(1) µ(a, a) = 1 for all a ∈ A.

(2) If a � b, then µ(a, b) = 0.

Proof. If a = b, then Xa,b consists only of the chain C = {a}, so that
∑

C∈Xa,b
(−1)l(C)| = 1. This proves

(1). To prove (2), note that if a � b then Xa,b is empty (there are no chains from a to b).

Corollary 4. Let A be a finite partially ordered set and µ its Möbius function. Then the definition of µ is
local. That is, for each a, b ∈ A, the integer µ(a, b) depends only on the partially ordered set {c ∈ A : a ≤
c ≤ b}.

Theorem 2 can be given a topological interpretation. To every partially ordered set A, one can associate
a topological space N(A), called the nerve of A. The space N(A) is a simplicial complex, whose simplices
are given by the chains of A. More precisely, we can construct N(A) as follows:

• For each a ∈ A, add a vertex va.

• For each a < b in A, add an edge ea,b from va to vb.

• For each a < b < c, add a triangle with vertices va, vb, and vc, whose edges are given by ea,b, eb,c, and
ea,c.

• And so forth.

To be still more precise, if we choose an enumeration A = {a1, . . . , an}, then we can define N(A) to be the
subset of Rn consisting of those vectors (t1, t2, . . . , tn) such that each ti ≥ 0,

∑
1≤i≤n ti = 1, and {ai : ti 6= 0}

is a chain of A.
To any finite simplicial complex Y , one can assign its Euler characteristic χ(Y ). This is simply given by

the alternating sum ∑
n≥0

(−1)nsn

where sn denotes the number of n-simplices of Y . In particular, if A is a partially ordered set, we have

χ(N(A)) =
∑
∅6=C⊆A

(−1)l(C),

where the sum is taken over all nonempty chains in A.
Now suppose we are given elements a, b ∈ A. Assume that a < b (otherwise, the value of the Möbius

function µ(a, b) is given by Corollary 3), and set A<b
>a = {c ∈ A : a < c < b}. If C is a chain in A with
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greatest element b and least element a, then C −{a, b} is a chain in A<b
>a. Conversely, if C ⊆ A<b

>a is a chain,
then C ∪ {a, b} is a chain in A with least element a and greatest element b. Using Theorem 2, we can write

µ(a, b) =
∑

C∈Xa,b

(−1)l(C) =
∑

D⊆A<b
>a

(−1)l(D ∪ {a, b}) = (
∑

∅6=D⊆A<b
>a

(−1)l(D))− 1 = χ(N(A<b
>a))− 1.

Combining this with Corollary 3, we obtain the following:

Proposition 5. Let A be a finite partially ordered set. Then the Möbius function µ : A × A → Z is given
by

µ(a, b) =


1 if a = b

χ(N(A<b
>a))− 1 if a < b

0 otherwise.

Example 6. Suppose we elements a < b of A which are adjacent, in the sense that there do not exist any
elements c with a < c < b. Then A<b

>a is empty, so χ(N(A<b
>a)) = 0, and µ(a, b) = −1.

Example 7. Let A be the collection of all subsets of the set {1, 2}, ordered by inclusion. Let a = ∅ and
b = {1, 2} be the least and greatest elements of A, respectively. Then A<b

>a is the collection of one-element
subsets of {1, 2}, which is a two-element antichain. Then the nerve N(A<b

>a) consists of two points (with the
discrete topology). We get χ(N(A<b

>a)) = 2, so that µ(a, b) = 1.

Example 8. Let A be the collection of all subsets of the set {1, 2, 3}, ordered by inclusion. Set a = ∅ and
b = {1, 2, 3}. The nerve of A<b

>a is a one-dimensional simplicial complex depicted in the diagram

{1}

zz $$
{1, 2} {1, 3}

{2}

OO

$$

{3}

OO

zz
{2, 3}.

Topologically, this is a circle. It has Euler characteristic 0 (since it has 6 vertices and 6 edges), so we get
µ(a, b) = −1.

Examples 7 and 8 can be generalized. Let A be the collection of subsets of the set {1, . . . , n}. If we
remove the least and greatest elements a, b ∈ A, we obtain a new partially ordered set A0. One can show
that N(A0) is a sphere of dimension n − 2, and therefore has Euler characteristic 1 + (−1)n. It follows
that µ(a, b) = (−1)n. However, we would like to prove this more directly, without making a digression into
topology.
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