## Math 155 (Lecture 21)

## October 25, 2011

Let A be a finite partially ordered set. The *incidence matrix* of A is the square matrix  $I = [i_{a,b}]_{a,b \in A}$ , where

$$i_{a,b} = \begin{cases} 1 & \text{if } a \le b \\ 0 & \text{otherwise.} \end{cases}$$

In the last lecture, we introduced the *Möbius function* of A. This is a function

$$\mu: A \times A \to \mathbf{Z}$$

with the following property: the matrix  $[\mu(a,b)]_{a,b\in A}$  is an inverse of the incidence matrix I

Our first goal in this lecture is to give a more explicit description of the function  $\mu$ . First, let us introduce a bit of notation.

**Notation 1.** Let A be a partially ordered set containing elements  $a, b \in A$ . We let  $X_{a,b}$  denote the set of all chains  $C \subseteq A$  containing a as a least element and b as a greatest element. In this case, we can write  $C = \{a = x_0 < x_1 < \cdots < x_k = b\}$ . We will refer to k as the *length* of C and denote it by l(C), so that l(C) = |C| - 1.

**Theorem 2.** Let A be a finite partially ordered set. The Möbius function  $\mu : A \times A \to \mathbf{Z}$  is given by the formula

$$\mu(a,b) = \sum_{C \in X_{a,b}} (-1)^{l(C)}.$$

Proof. Define  $\lambda(a, b) = \sum_{C \in X_{a,b}} (-1)^{l(C)}$ . To prove that  $\lambda = \mu$ , it will suffice to show that the matrix  $M = [\lambda(a, b)]_{a,b \in A}$  is an inverse of the incidence matrix I. Since I is invertible, it will suffice to show that MI is the identity matrix. Unwinding the definitions, we must show that for  $a, c \in A$ , the sum

$$\sum_{b \in A} \lambda(b,c) \begin{cases} 1 & \text{if} a \leq b \\ 0 & \text{otherwise} \end{cases}$$

is 1 if a = c and zero otherwise. In other words, we wish to show

$$\sum_{b \ge a} \lambda(b, c) = \begin{cases} 1 & \text{if } a = c \\ 0 & \text{if } a \neq c \end{cases}$$

Invoking the definition of  $\lambda_{b,c}$ , we can rewrite the right hand side as

$$\sum_{b \ge a} \sum_{C \in X_{b,c}} (-1)^{l(C)}$$

This can be written as

$$\sum_{C \in Y_{a,c}} (-1)^{l(C)}$$

where  $Y_{a,c}$  denotes the collection of all chains in A whose largest element is equal to c, and whose smallest element is  $\geq a$ .

If a = c, then  $Y_{a,c}$  contains only a single chain  $C = \{c\}$  of length 0, so this sum is equal to 1. Let us therefore assume that  $a \neq c$ , and prove that the sum is equal to zero. We divide the set  $Y_{a,c}$  into two parts: let  $Y_+ \subseteq Y_{a,c}$  be the collection of those chains which contain a, and let  $Y_-$  be the collection of those chains which do not. The construction  $C \mapsto C \cup \{a\}$  determines a bijection from  $Y_-$  to  $Y_+$  (the inverse bijection is given by  $C \mapsto C - \{a\}$ ). We can therefore write

$$\sum_{C \in Y_{a,c}} (-1)^{l(C)} = \sum_{C \in Y_{-}} (-1)^{l(C)} + \sum_{C \in Y_{-}} (-1)^{l(C \cup \{a\})}$$

On the right hand side, we can cancel the relevant terms pairwise to obtain 0.

**Corollary 3.** Let A be a finite partially ordered set and  $\mu$  its Möbius function. Then  $\mu$  has the following properties:

- (1)  $\mu(a,a) = 1$  for all  $a \in A$ .
- (2) If  $a \nleq b$ , then  $\mu(a, b) = 0$ .

*Proof.* If a = b, then  $X_{a,b}$  consists only of the chain  $C = \{a\}$ , so that  $\sum_{C \in X_{a,b}} (-1)^{l(C)|} = 1$ . This proves (1). To prove (2), note that if  $a \notin b$  then  $X_{a,b}$  is empty (there are no chains from a to b).

**Corollary 4.** Let A be a finite partially ordered set and  $\mu$  its Möbius function. Then the definition of  $\mu$  is local. That is, for each  $a, b \in A$ , the integer  $\mu(a, b)$  depends only on the partially ordered set  $\{c \in A : a \leq c \leq b\}$ .

Theorem 2 can be given a topological interpretation. To every partially ordered set A, one can associate a topological space N(A), called the *nerve* of A. The space N(A) is a simplicial complex, whose simplices are given by the chains of A. More precisely, we can construct N(A) as follows:

- For each  $a \in A$ , add a vertex  $v_a$ .
- For each a < b in A, add an edge  $e_{a,b}$  from  $v_a$  to  $v_b$ .
- For each a < b < c, add a triangle with vertices  $v_a$ ,  $v_b$ , and  $v_c$ , whose edges are given by  $e_{a,b}$ ,  $e_{b,c}$ , and  $e_{a,c}$ .
- And so forth.

To be still more precise, if we choose an enumeration  $A = \{a_1, \ldots, a_n\}$ , then we can define N(A) to be the subset of  $\mathbb{R}^n$  consisting of those vectors  $(t_1, t_2, \ldots, t_n)$  such that each  $t_i \ge 0$ ,  $\sum_{1 \le i \le n} t_i = 1$ , and  $\{a_i : t_i \ne 0\}$  is a chain of A.

To any finite simplicial complex Y, one can assign its *Euler characteristic*  $\chi(Y)$ . This is simply given by the alternating sum

$$\sum_{n\geq 0} (-1)^n s_n$$

where  $s_n$  denotes the number of *n*-simplices of Y. In particular, if A is a partially ordered set, we have

$$\chi(N(A)) = \sum_{\emptyset \neq C \subseteq A} (-1)^{l(C)}.$$

where the sum is taken over all nonempty chains in A.

Now suppose we are given elements  $a, b \in A$ . Assume that a < b (otherwise, the value of the Möbius function  $\mu(a, b)$  is given by Corollary 3), and set  $A_{>a}^{<b} = \{c \in A : a < c < b\}$ . If C is a chain in A with

greatest element b and least element a, then  $C - \{a, b\}$  is a chain in  $A_{>a}^{\leq b}$ . Conversely, if  $C \subseteq A_{>a}^{\leq b}$  is a chain, then  $C \cup \{a, b\}$  is a chain in A with least element a and greatest element b. Using Theorem 2, we can write

$$\mu(a,b) = \sum_{C \in X_{a,b}} (-1)^{l(C)} = \sum_{D \subseteq A_{>a}^{a}^{a}^{$$

Combining this with Corollary 3, we obtain the following:

**Proposition 5.** Let A be a finite partially ordered set. Then the Möbius function  $\mu : A \times A \to \mathbf{Z}$  is given by

$$\mu(a,b) = \begin{cases} 1 & \text{if } a = b\\ \chi(N(A_{\geq a}^{\leq b})) - 1 & \text{if } a < b\\ 0 & \text{otherwise.} \end{cases}$$

**Example 6.** Suppose we elements a < b of A which are *adjacent*, in the sense that there do not exist any elements c with a < c < b. Then  $A_{>a}^{< b}$  is empty, so  $\chi(N(A_{>a}^{< b})) = 0$ , and  $\mu(a, b) = -1$ .

**Example 7.** Let A be the collection of all subsets of the set  $\{1,2\}$ , ordered by inclusion. Let  $a = \emptyset$  and  $b = \{1,2\}$  be the least and greatest elements of A, respectively. Then  $A_{\geq a}^{\leq b}$  is the collection of one-element subsets of  $\{1,2\}$ , which is a two-element antichain. Then the nerve  $N(A_{\geq a}^{\leq b})$  consists of two points (with the discrete topology). We get  $\chi(N(A_{\geq a}^{\leq b})) = 2$ , so that  $\mu(a, b) = 1$ .

**Example 8.** Let A be the collection of all subsets of the set  $\{1, 2, 3\}$ , ordered by inclusion. Set  $a = \emptyset$  and  $b = \{1, 2, 3\}$ . The nerve of  $A_{>a}^{<b}$  is a one-dimensional simplicial complex depicted in the diagram



Topologically, this is a circle. It has Euler characteristic 0 (since it has 6 vertices and 6 edges), so we get  $\mu(a, b) = -1$ .

Examples 7 and 8 can be generalized. Let A be the collection of subsets of the set  $\{1, \ldots, n\}$ . If we remove the least and greatest elements  $a, b \in A$ , we obtain a new partially ordered set  $A_0$ . One can show that  $N(A_0)$  is a sphere of dimension n-2, and therefore has Euler characteristic  $1 + (-1)^n$ . It follows that  $\mu(a, b) = (-1)^n$ . However, we would like to prove this more directly, without making a digression into topology.