## Math 155 (Lecture 21)

October 25, 2011

Let $A$ be a finite partially ordered set. The incidence matrix of $A$ is the square matrix $I=\left[i_{a, b}\right]_{a, b \in A}$, where

$$
i_{a, b}= \begin{cases}1 & \text { if } a \leq b \\ 0 & \text { otherwise }\end{cases}
$$

In the last lecture, we introduced the Möbius function of $A$. This is a function

$$
\mu: A \times A \rightarrow \mathbf{Z}
$$

with the following property: the matrix $[\mu(a, b)]_{a, b \in A}$ is an inverse of the incidence matrix $I$
Our first goal in this lecture is to give a more explicit description of the function $\mu$. First, let us introduce a bit of notation.

Notation 1. Let $A$ be a partially ordered set containing elements $a, b \in A$. We let $X_{a, b}$ denote the set of all chains $C \subseteq A$ containing $a$ as a least element and $b$ as a greatest element. In this case, we can write $C=\left\{a=x_{0}<x_{1}<\cdots<x_{k}=b\right\}$. We will refer to $k$ as the length of $C$ and denote it by $l(C)$, so that $l(C)=|C|-1$.

Theorem 2. Let $A$ be a finite partially ordered set. The Möbius function $\mu: A \times A \rightarrow \mathbf{Z}$ is given by the formula

$$
\mu(a, b)=\sum_{C \in X_{a, b}}(-1)^{l(C)}
$$

Proof. Define $\lambda(a, b)=\sum_{C \in X_{a, b}}(-1)^{l(C)}$. To prove that $\lambda=\mu$, it will suffice to show that the matrix $M=[\lambda(a, b)]_{a, b \in A}$ is an inverse of the incidence matrix $I$. Since $I$ is invertible, it will suffice to show that $M I$ is the identity matrix. Unwinding the definitions, we must show that for $a, c \in A$, the sum

$$
\sum_{b \in A} \lambda(b, c) \begin{cases}1 & \text { if } a \leq b \\ 0 & \text { otherwise. }\end{cases}
$$

is 1 if $a=c$ and zero otherwise. In other words, we wish to show

$$
\sum_{b \geq a} \lambda(b, c)= \begin{cases}1 & \text { if } a=c \\ 0 & \text { if } a \neq c\end{cases}
$$

Invoking the definition of $\lambda_{b, c}$, we can rewrite the right hand side as

$$
\sum_{b \geq a} \sum_{C \in X_{b, c}}(-1)^{l(C)}
$$

This can be written as

$$
\sum_{C \in Y_{a, c}}(-1)^{l(C)}
$$

where $Y_{a, c}$ denotes the collection of all chains in $A$ whose largest element is equal to $c$, and whose smallest element is $\geq a$.

If $a=c$, then $Y_{a, c}$ contains only a single chain $C=\{c\}$ of length 0 , so this sum is equal to 1 . Let us therefore assume that $a \neq c$, and prove that the sum is equal to zero. We divide the set $Y_{a, c}$ into two parts: let $Y_{+} \subseteq Y_{a, c}$ be the collection of those chains which contain $a$, and let $Y_{-}$be the collection of those chains which do not. The construction $C \mapsto C \cup\{a\}$ determines a bijection from $Y_{-}$to $Y_{+}$(the inverse bijection is given by $C \mapsto C-\{a\})$. We can therefore write

$$
\sum_{C \in Y_{a, c}}(-1)^{l(C)}=\sum_{C \in Y_{-}}(-1)^{l(C)}+\sum_{C \in Y_{-}}(-1)^{l(C \cup\{a\})}
$$

On the right hand side, we can cancel the relevant terms pairwise to obtain 0 .
Corollary 3. Let $A$ be a finite partially ordered set and $\mu$ its Möbius function. Then $\mu$ has the following properties:
(1) $\mu(a, a)=1$ for all $a \in A$.
(2) If $a \not \leq b$, then $\mu(a, b)=0$.

Proof. If $a=b$, then $X_{a, b}$ consists only of the chain $C=\{a\}$, so that $\sum_{C \in X_{a, b}}(-1)^{l(C) \mid}=1$. This proves (1). To prove (2), note that if $a \not \leq b$ then $X_{a, b}$ is empty (there are no chains from $a$ to $b$ ).

Corollary 4. Let $A$ be a finite partially ordered set and $\mu$ its Möbius function. Then the definition of $\mu$ is local. That is, for each $a, b \in A$, the integer $\mu(a, b)$ depends only on the partially ordered set $\{c \in A: a \leq$ $c \leq b\}$.

Theorem 2 can be given a topological interpretation. To every partially ordered set $A$, one can associate a topological space $N(A)$, called the nerve of $A$. The space $N(A)$ is a simplicial complex, whose simplices are given by the chains of $A$. More precisely, we can construct $N(A)$ as follows:

- For each $a \in A$, add a vertex $v_{a}$.
- For each $a<b$ in $A$, add an edge $e_{a, b}$ from $v_{a}$ to $v_{b}$.
- For each $a<b<c$, add a triangle with vertices $v_{a}, v_{b}$, and $v_{c}$, whose edges are given by $e_{a, b}, e_{b, c}$, and $e_{a, c}$.
- And so forth.

To be still more precise, if we choose an enumeration $A=\left\{a_{1}, \ldots, a_{n}\right\}$, then we can define $N(A)$ to be the subset of $\mathbb{R}^{n}$ consisting of those vectors $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ such that each $t_{i} \geq 0, \sum_{1 \leq i \leq n} t_{i}=1$, and $\left\{a_{i}: t_{i} \neq 0\right\}$ is a chain of $A$.

To any finite simplicial complex $Y$, one can assign its Euler characteristic $\chi(Y)$. This is simply given by the alternating sum

$$
\sum_{n \geq 0}(-1)^{n} s_{n}
$$

where $s_{n}$ denotes the number of $n$-simplices of $Y$. In particular, if $A$ is a partially ordered set, we have

$$
\chi(N(A))=\sum_{\emptyset \neq C \subseteq A}(-1)^{l(C)}
$$

where the sum is taken over all nonempty chains in $A$.
Now suppose we are given elements $a, b \in A$. Assume that $a<b$ (otherwise, the value of the Möbius function $\mu(a, b)$ is given by Corollary 3), and set $A_{>a}^{<b}=\{c \in A: a<c<b\}$. If $C$ is a chain in $A$ with
greatest element $b$ and least element $a$, then $C-\{a, b\}$ is a chain in $A_{>a}^{<b}$. Conversely, if $C \subseteq A_{>a}^{<b}$ is a chain, then $C \cup\{a, b\}$ is a chain in $A$ with least element $a$ and greatest element $b$. Using Theorem 2, we can write

$$
\mu(a, b)=\sum_{C \in X_{a, b}}(-1)^{l(C)}=\sum_{D \subseteq A_{>a}^{<b}}(-1)^{l}(D \cup\{a, b\})=\left(\sum_{\emptyset \neq D \subseteq A_{>a}^{<b}}(-1)^{l(D)}\right)-1=\chi\left(N\left(A_{>a}^{<b}\right)\right)-1 .
$$

Combining this with Corollary 3, we obtain the following:
Proposition 5. Let $A$ be a finite partially ordered set. Then the Möbius function $\mu: A \times A \rightarrow \mathbf{Z}$ is given by

$$
\mu(a, b)= \begin{cases}1 & \text { if } a=b \\ \chi\left(N\left(A_{>a}^{<b}\right)\right)-1 & \text { if } a<b \\ 0 & \text { otherwise }\end{cases}
$$

Example 6. Suppose we elements $a<b$ of $A$ which are adjacent, in the sense that there do not exist any elements $c$ with $a<c<b$. Then $A_{>a}^{<b}$ is empty, so $\chi\left(N\left(A_{>a}^{<b}\right)\right)=0$, and $\mu(a, b)=-1$.

Example 7. Let $A$ be the collection of all subsets of the set $\{1,2\}$, ordered by inclusion. Let $a=\emptyset$ and $b=\{1,2\}$ be the least and greatest elements of $A$, respectively. Then $A_{>a}^{<b}$ is the collection of one-element subsets of $\{1,2\}$, which is a two-element antichain. Then the nerve $N\left(A_{>a}^{<b}\right)$ consists of two points (with the discrete topology). We get $\chi\left(N\left(A_{>a}^{<b}\right)\right)=2$, so that $\mu(a, b)=1$.

Example 8. Let $A$ be the collection of all subsets of the set $\{1,2,3\}$, ordered by inclusion. Set $a=\emptyset$ and $b=\{1,2,3\}$. The nerve of $A_{>a}^{<b}$ is a one-dimensional simplicial complex depicted in the diagram


Topologically, this is a circle. It has Euler characteristic 0 (since it has 6 vertices and 6 edges), so we get $\mu(a, b)=-1$.

Examples 7 and 8 can be generalized. Let $A$ be the collection of subsets of the set $\{1, \ldots, n\}$. If we remove the least and greatest elements $a, b \in A$, we obtain a new partially ordered set $A_{0}$. One can show that $N\left(A_{0}\right)$ is a sphere of dimension $n-2$, and therefore has Euler characteristic $1+(-1)^{n}$. It follows that $\mu(a, b)=(-1)^{n}$. However, we would like to prove this more directly, without making a digression into topology.

