Math 155 (Lecture 21)

October 25, 2011

Let A be a finite partially ordered set. The incidence matriz of A is the square matrix I = [ig p]a,pcA,
where
. 1 ifa<bd
la,b = .
0 otherwise.

In the last lecture, we introduced the Mdbius function of A. This is a function
w:AxA—Z

with the following property: the matrix [p(a,b)]qpea is an inverse of the incidence matrix I
Our first goal in this lecture is to give a more explicit description of the function p. First, let us introduce
a bit of notation.

Notation 1. Let A be a partially ordered set containing elements a,b € A. We let X, ; denote the set of
all chains C' C A containing a as a least element and b as a greatest element. In this case, we can write
C={a=xzy <z < -+ <z =b}. We will refer to k as the length of C and denote it by I(C), so that
c)y=1|cl|-1.

Theorem 2. Let A be a finite partially ordered set. The Mdobius function p: A x A — Z is given by the
formula
M(a7 b) = Z (_1)Z(C)'
CeXap

Proof. Define A(a,b) = > ccx. b(—l)l(c). To prove that A = p, it will suffice to show that the matrix

M = [A(a,b)]apca is an inverse of the incidence matrix I. Since I is invertible, it will suffice to show that
M1 is the identity matrix. Unwinding the definitions, we must show that for a,c € A, the sum

1 ifa<b
> A, c) {0

bea otherwise.

is 1 if a = ¢ and zero otherwise. In other words, we wish to show
1 ifa=
Savo-{) e
e 0 ifaz#ec
Invoking the definition of Ay ., we can rewrite the right hand side as

> Y e

b>a CeXy

> (1,

C€eYq,c

This can be written as



where Y, . denotes the collection of all chains in A whose largest element is equal to ¢, and whose smallest
element is > a.

If a = ¢, then Y, . contains only a single chain C' = {c} of length 0, so this sum is equal to 1. Let us
therefore assume that a # ¢, and prove that the sum is equal to zero. We divide the set Y, . into two parts:
let Y, C Y, . be the collection of those chains which contain a, and let Y_ be the collection of those chains
which do not. The construction C'— C U {a} determines a bijection from Y_ to Y, (the inverse bijection is
given by C'+— C — {a}). We can therefore write

Z (—DHUE) = Z (-)UO 4 Z (—1)lcutal),

CEYy,e cey_ cey_
On the right hand side, we can cancel the relevant terms pairwise to obtain 0. O

Corollary 3. Let A be a finite partially ordered set and p its Mébius function. Then p has the following
properties:

(1) pla,a) =1 for alla € A.
(2) Ifa £ b, then p(a,b) = 0.

Proof. 1f a = b, then X, consists only of the chain C' = {a}, so that > - b(—l)l(c)\ = 1. This proves
(1). To prove (2), note that if a £ b then X, is empty (there are no chains from a to b). O

Corollary 4. Let A be a finite partially ordered set and p its Mébius function. Then the definition of p is
local. That is, for each a,b € A, the integer u(a,b) depends only on the partially ordered set {c € A :a <
¢ < b}.

Theorem 2 can be given a topological interpretation. To every partially ordered set A, one can associate
a topological space N(A), called the nerve of A. The space N(A) is a simplicial complex, whose simplices
are given by the chains of A. More precisely, we can construct N(A) as follows:

For each a € A, add a vertex v,.

For each a < bin A, add an edge e, from v, to vs.

For each a < b < ¢, add a triangle with vertices v,, vy, and v, whose edges are given by eq s, €p,c, and

€ac-
e And so forth.

To be still more precise, if we choose an enumeration A = {ay,...,a,}, then we can define N(A) to be the
subset of R" consisting of those vectors (t1,t,...,t,) such that each t; > 0, >, ., t; = 1, and {a; : t; # 0}
is a chain of A.

To any finite simplicial complex Y, one can assign its Fuler characteristic x(Y'). This is simply given by

the alternating sum
> (=1
n>0
where s,, denotes the number of n-simplices of Y. In particular, if A is a partially ordered set, we have
X(N(A) = D (=),
P£CCA

where the sum is taken over all nonempty chains in A.
Now suppose we are given elements a,b € A. Assume that a < b (otherwise, the value of the Mébius
function s (a,b) is given by Corollary 3), and set AS! = {c € A:a < ¢ < b}. If C is a chain in A with



greatest element b and least element a, then C' — {a, b} is a chain in AS. Conversely, if C C ASY is a chain,
then C'U{a,b} is a chain in A with least element a and greatest element b. Using Theorem 2, we can write

plap)= Y (1)@= 3 (1)(Dufath=( Y (~1'P)-1=x(N(A)) - 1.

CeXap DCASY 0£ADCAS?
Combining this with Corollary 3, we obtain the following:

Proposition 5. Let A be a finite partially ordered set. Then the Mdébius function p: A x A — Z is given

by
1 ifa="0
pla,b) = { x(N(AS2)) =1 ifa<b
0 otherwise.

Example 6. Suppose we elements a < b of A which are adjacent, in the sense that there do not exist any
elements ¢ with a < ¢ < b. Then ASY is empty, so x(N(A$t)) =0, and u(a,b) = —1.

Example 7. Let A be the collection of all subsets of the set {1,2}, ordered by inclusion. Let a = ) and
b = {1,2} be the least and greatest elements of A, respectively. Then A;f’l is the collection of one-element
subsets of {1,2}, which is a two-element antichain. Then the nerve N(AS%) consists of two points (with the
discrete topology). We get x(N(AS%)) =2, so that u(a,b) = 1.

Example 8. Let A be the collection of all subsets of the set {1,2,3}, ordered by inclusion. Set a = §) and
b= {1,2,3}. The nerve of AS® is a one-dimensional simplicial complex depicted in the diagram

{1}
/ \
{1,2} {1,3}

! |

{2} {3}

~N 7

(2,3}

Topologically, this is a circle. It has Euler characteristic 0 (since it has 6 vertices and 6 edges), so we get
wu(a,b) = —1.

Examples 7 and 8 can be generalized. Let A be the collection of subsets of the set {1,...,n}. If we
remove the least and greatest elements a,b € A, we obtain a new partially ordered set Ag. One can show
that N(Ap) is a sphere of dimension n — 2, and therefore has Euler characteristic 1 + (—1)". It follows
that p(a,b) = (—1)". However, we would like to prove this more directly, without making a digression into
topology.



