Math 155 (Lecture 20)

October 20, 2011

Let X be a partially ordered set. Let $C \subseteq X$ be a chain, and $A \subseteq X$ an antichain. Then $C \cap A$ is both a chain and an antichain: it follows that $|C \cap A| \leq 1$.

Suppose that X is partitioned into antichains A_{1}, \ldots, A_{m}. Then every chain $C \subseteq X$ can contain at most one element of each A_{i}. It follows that $|C| \leq m$. Similarly, if we partition X into chains C_{1}, \ldots, C_{n}, then every antichain $A \subseteq X$ must satisfy $|A| \leq n$. Our first goal in this lecture is to show that both of these bounds are sharp.

Theorem 1. Let X be a finite partially ordered set and let $m \geq 0$. The following conditions are equivalent:
(1) Every chain in X has size $\leq m$.
(2) The set X can be written as a union of m antichains.

Theorem 2 (Dilworth). Let X be a finite partially ordered set and let $n \geq 0$. The following conditions are equivalent:
(1) Every antichain in X has length $\leq n$.
(2) The set X can be written as a union of n chains.

Though the statements of Theorems 1 and 2 are analogous, Theorem 1 is considerably easier to prove. Let us begin with its proof.

Definition 3. Let X be a finite partially ordered set. The height of an element $x \in X$ is the length of the largest chain

$$
x_{0}<x_{1}<\cdots<x_{h}=x
$$

ending in x.
Example 4. An element $x \in X$ is minimal if and only if it has height 0 .
We have already established the implication $(2) \Rightarrow(1)$ of Theorem 1. To prove the converse, suppose that every chain in X has length $\leq m$. We wish to show that X can be partitioned into m antichains. Note that every element of X has height $<m$. We may therefore write $X=X_{0} \cup X_{1} \cup \cdots \cup X_{m-1}$, where X_{i} denotes the subset of X consisting of elements of height i. To complete the proof, it will suffice to show that each X_{i} is an antichain. Suppose that $x, y \in X_{i}$. Then x has height i, so there exists a chain

$$
x_{0}<x_{1}<\ldots<x_{h}=x
$$

If $x<y$, then we have a chain $x_{0}<x_{1}<\ldots<x_{h}<y$, contradicting our assumption that y has height i. It follows that X_{i} is an antichain, and Theorem 1 is proved.

The proof of Theorem 2 is a bit trickier. Once again, we have already proven that $(2) \Rightarrow(1)$. We wish to prove the converse: in other words, we wish to show that X can be partitioned into n chains, where n is the width of X (that is, the largest size of an antichain in X).

We will proceed by induction on the cardinality of X. If X is empty, then the theorem is trivial. Let us therefore assume that X is nonempty. Let n be the width of X and choose a chain $C \subseteq X$ whose size is as large as possible. Let c_{-}denote the smallest element of C and c_{+}the largest element of C (these elements might be the same). There are two cases to consider:
(a) Suppose that $X-C$ has width $<n$. It follows from the inductive hypothesis that we can partition $X-C$ into chains C_{1}, \ldots, C_{m} for $m<n$. Then $X=C_{1} \cup \cdots \cup C_{m} \cup C$ can be partitioned into $m+1 \leq n$ chains.
(b) Suppose that $X-C$ has width n. Choose an antichain $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq X-C$. Set

$$
\begin{aligned}
& X_{+}=\left\{x \in X:\left[(\exists 1 \leq i \leq n)\left[x \geq a_{i}\right]\right\}\right. \\
& X_{-}=\left\{x \in X:\left[(\exists 1 \leq i \leq n)\left[x \leq a_{j}\right]\right\}\right.
\end{aligned}
$$

Note that $X=X_{-} \cup X_{+}$: if there were to exist an element $x \in X$ belonging to neither X_{-}or X_{+}, then $\left\{a_{1}, \ldots, a_{n}, x\right\}$ would be an antichain of size $n+1$ in X.
Moreover, we have $X_{-} \cap X_{+}=\left\{a_{1}, \ldots, a_{n}\right\}$: if $x \in X_{+} \cap X_{-}$, then we can write

$$
a_{i} \leq x \leq a_{j}
$$

for some $1 \leq i \leq j \leq n$. Since $\left\{a_{1}, \ldots, a_{n}\right\}$ is an antichain, we conclude that $i=j$, so that $x=a_{i} \in$ $\left\{a_{1}, \ldots, a_{n}\right\}$.
Finally, we claim that X_{-}and X_{+}are strictly smaller than X. In fact, we claim that X_{+}does not contain the element $c_{-} \in C$. Otherwise, there exists $1 \leq i \leq n$ such that $a_{i} \leq c_{-}$. Since $a_{i} \in X-C$, we have $a_{i} \neq c_{-}$, so that $C \cup\left\{a_{i}\right\}$ is a chain strictly larger than C. This contradiction shows that $c_{-} \notin X_{+}$, and similarly $c_{+} \notin X_{-}$.
Since $\left|X_{+}\right|,\left|X_{-}\right|<|X|$, we can apply the inductive hypothesis to each. Each has width n (since X_{-}and X_{+}are contained in X, they can have width at most n; since each contains the antichain $\left\{a_{1}, \ldots, a_{n}\right\}$, it has size exactly n). We therefore deduce that X_{-}can be partitioned into chains $C_{-, 1}, C_{-, 2}, \ldots, C_{-, n}$. Since each of these chains can contain at most one of the elements a_{j}, we conclude that each $C_{-, i}$ contains exactly one of the elements a_{j}. Reindexing, we may assume that $a_{i} \in C_{-, i}$ for each i. Note that a_{i} must be a greatest element of $C_{-, i}$. Otherwise we have $a_{i} \leq x$ for $x \in C_{-, i}$, in which case (since $x \in X_{-}$) we get $a_{i} \leq x \leq a_{j}$ for some j, which forces $i=j$ and therefore $x=a_{i}$.
The same argument gives us a partition of X_{+}into chains $C_{+, 1}, \ldots, C_{+, n}$ such that each $C_{+, i}$ contains a_{i} as a least element. Then each of the sets $C_{i}=C_{-, i} \cup C_{+, i}$ is a chain, and we have $X=C_{1} \cup \cdots \cup C_{n}$. This completes the proof of Theorem 2

We now turn to different topic: an idea called Möbius inversion. Let's begin with a brief review of the inclusion-exclusion principle. Let X be a set equipped with subsets $X_{1}, \ldots, X_{n} \subseteq X$. For each $J \subseteq\{1, \ldots, n\}$, set

$$
X_{J}=\bigcap_{i \in J} X_{i} \quad X(J)=\left(\bigcap_{i \in J} X_{i}\right) \cap\left(\bigcap_{i \notin J}\left(X-X_{i}\right)\right)
$$

Then X_{J} is given by the disjoint union of the sets $X(K)$, where K ranges over subsets of $\{1, \ldots, n\}$ containing J. We therefore have

$$
\begin{equation*}
\left|X_{J}\right|=\sum_{K \supseteq J}|X(K)| \tag{1}
\end{equation*}
$$

The inclusion-exclusion principle gives a formula for $X(\emptyset)=X-\bigcup_{i} X_{i}$ in terms of the sizes $\left|X_{J}\right|$; namely the formula

$$
|X(\emptyset)|=\sum_{K}(-1)^{|K|}\left|X_{K}\right| .
$$

This can be regarded as a special case of the following more general situation:

Question 5. Let A be a finite partially ordered set, and suppose we are given integers $\left\{m_{a}\right\}_{a \in A}$. For $a \in A$, set

$$
n_{a}=\sum_{b \leq a} m_{a}
$$

How can we recover the integers m_{a} from the integers n_{a} ?
Remark 6. To see the inclusion-exclusion principle is a special case of Question 5, we take A to be the collection of all subsets of $\{1, \ldots, n\}$, partially ordered by reverse inclusion. For $J \in A$, set $m_{J}=|X(J)|$, so that equation 1 gives

$$
n_{J}=\sum_{K \supseteq J} m_{J}=\left|X_{J}\right|
$$

Proposition 7. Let A be a finite partially ordered set. Then there exists a function $\mu: A \times A \rightarrow \mathbf{Z}$ with the following property: given any collection of integers $\left\{m_{a}\right\}_{a \in A}$, if we set

$$
n_{a}=\sum_{b \leq a} m_{a}
$$

then $m_{a}=\sum_{b \in A} \mu(b, a) n_{a}$.
The function $\mu: A \times A \rightarrow \mathbf{Z}$ is called the Möbius function of the partially ordered set A.
Proof. In the last lecture, we proved that the partial ordering on A can be refined to a linear ordering. That is, we can write $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, where $a_{i} \leq a_{j}$ only when $i=j$. Let M be the k-by- k matrix given by

$$
M_{i, j}=\left\{\begin{array}{lc}
1 & \text { if } a_{i} \leq a_{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

We can then regard a collection of integers $\left\{m_{a}\right\}_{a \in A}$ as a column vector

$$
\left(m_{a_{1}}, m_{a_{2}}, \ldots, m_{a_{k}}\right)
$$

Then

$$
n_{a_{j}}=\sum_{a_{i} \leq a_{j}} m_{a_{i}}=\sum_{1 \leq i \leq k} M_{i, j} m_{a_{i}},
$$

so that $\left\{n_{a}\right\}_{a \in A}$ is the column vector obtained by acting by the matrix $M_{i, j}$. To have

$$
m_{a}=\sum_{b \in A} \mu(b, a) n_{a}
$$

we want the matrix $\left\{\mu\left(a_{i}, a_{j}\right)\right\}$ to be an inverse of the matrix $M_{i, j}$. To guarantee that this matrix exists, it suffices to know that the determinant of the matrix $M_{i, j}$ is equal to 1 . This follows from the fact that $M_{i, j}$ is a lower triangular matrix with 1's along the diagonal.

Of course, Proposition 7 by itself does not recover the inclusion-exclusion principle. It tells us only that there exists a formula of the form

$$
\left|X-\bigcup_{i} X_{i}\right|=\sum_{J} c_{J}\left|X_{J}\right|,
$$

for some integers c_{J} (determined by the Möbius function of the partially ordered set $P(\{1, \ldots, n\})$). To see that $c_{J}=(-1)^{|J|}$, we need to know something about the function μ appearing in Proposition 7 . We will take this up in the next lecture.

