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Let X be a partially ordered set. Let C ⊆ X be a chain, and A ⊆ X an antichain. Then C ∩ A is both
a chain and an antichain: it follows that |C ∩A| ≤ 1.

Suppose that X is partitioned into antichains A1, . . . , Am. Then every chain C ⊆ X can contain at most
one element of each Ai. It follows that |C| ≤ m. Similarly, if we partition X into chains C1, . . . , Cn, then
every antichain A ⊆ X must satisfy |A| ≤ n. Our first goal in this lecture is to show that both of these
bounds are sharp.

Theorem 1. Let X be a finite partially ordered set and let m ≥ 0. The following conditions are equivalent:

(1) Every chain in X has size ≤ m.

(2) The set X can be written as a union of m antichains.

Theorem 2 (Dilworth). Let X be a finite partially ordered set and let n ≥ 0. The following conditions are
equivalent:

(1) Every antichain in X has length ≤ n.

(2) The set X can be written as a union of n chains.

Though the statements of Theorems 1 and 2 are analogous, Theorem 1 is considerably easier to prove.
Let us begin with its proof.

Definition 3. Let X be a finite partially ordered set. The height of an element x ∈ X is the length of the
largest chain

x0 < x1 < · · · < xh = x

ending in x.

Example 4. An element x ∈ X is minimal if and only if it has height 0.

We have already established the implication (2) ⇒ (1) of Theorem 1. To prove the converse, suppose
that every chain in X has length ≤ m. We wish to show that X can be partitioned into m antichains. Note
that every element of X has height < m. We may therefore write X = X0 ∪ X1 ∪ · · · ∪ Xm−1, where Xi

denotes the subset of X consisting of elements of height i. To complete the proof, it will suffice to show that
each Xi is an antichain. Suppose that x, y ∈ Xi. Then x has height i, so there exists a chain

x0 < x1 < . . . < xh = x.

If x < y, then we have a chain x0 < x1 < . . . < xh < y, contradicting our assumption that y has height i. It
follows that Xi is an antichain, and Theorem 1 is proved.

The proof of Theorem 2 is a bit trickier. Once again, we have already proven that (2) ⇒ (1). We wish
to prove the converse: in other words, we wish to show that X can be partitioned into n chains, where n is
the width of X (that is, the largest size of an antichain in X).
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We will proceed by induction on the cardinality of X. If X is empty, then the theorem is trivial. Let us
therefore assume that X is nonempty. Let n be the width of X and choose a chain C ⊆ X whose size is as
large as possible. Let c− denote the smallest element of C and c+ the largest element of C (these elements
might be the same). There are two cases to consider:

(a) Suppose that X − C has width < n. It follows from the inductive hypothesis that we can partition
X−C into chains C1, . . . , Cm for m < n. Then X = C1∪· · ·∪Cm∪C can be partitioned into m+1 ≤ n
chains.

(b) Suppose that X − C has width n. Choose an antichain {a1, . . . , an} ⊆ X − C. Set

X+ = {x ∈ X : [(∃1 ≤ i ≤ n)[x ≥ ai]}

X− = {x ∈ X : [(∃1 ≤ i ≤ n)[x ≤ aj ]}.
Note that X = X− ∪ X+: if there were to exist an element x ∈ X belonging to neither X− or X+,
then {a1, . . . , an, x} would be an antichain of size n+ 1 in X.

Moreover, we have X− ∩X+ = {a1, . . . , an}: if x ∈ X+ ∩X−, then we can write

ai ≤ x ≤ aj

for some 1 ≤ i ≤ j ≤ n. Since {a1, . . . , an} is an antichain, we conclude that i = j, so that x = ai ∈
{a1, . . . , an}.
Finally, we claim that X− and X+ are strictly smaller than X. In fact, we claim that X+ does not
contain the element c− ∈ C. Otherwise, there exists 1 ≤ i ≤ n such that ai ≤ c−. Since ai ∈ X − C,
we have ai 6= c−, so that C ∪ {ai} is a chain strictly larger than C. This contradiction shows that
c− /∈ X+, and similarly c+ /∈ X−.

Since |X+|, |X−| < |X|, we can apply the inductive hypothesis to each. Each has width n (since X− and
X+ are contained in X, they can have width at most n; since each contains the antichain {a1, . . . , an}, it
has size exactly n). We therefore deduce that X− can be partitioned into chains C−,1, C−,2, . . . , C−,n.
Since each of these chains can contain at most one of the elements aj , we conclude that each C−,i
contains exactly one of the elements aj . Reindexing, we may assume that ai ∈ C−,i for each i. Note
that ai must be a greatest element of C−,i. Otherwise we have ai ≤ x for x ∈ C−,i, in which case
(since x ∈ X− ) we get ai ≤ x ≤ aj for some j, which forces i = j and therefore x = ai.

The same argument gives us a partition of X+ into chains C+,1, . . . , C+,n such that each C+,i contains
ai as a least element. Then each of the sets Ci = C−,i∪C+,i is a chain, and we have X = C1∪· · ·∪Cn.
This completes the proof of Theorem 2

We now turn to different topic: an idea called Möbius inversion. Let’s begin with a brief review of the
inclusion-exclusion principle. LetX be a set equipped with subsetsX1, . . . , Xn ⊆ X. For each J ⊆ {1, . . . , n},
set

XJ =
⋂
i∈J

Xi X(J) = (
⋂
i∈J

Xi) ∩ (
⋂
i/∈J

(X −Xi))

Then XJ is given by the disjoint union of the sets X(K), where K ranges over subsets of {1, . . . , n} containing
J . We therefore have

|XJ | =
∑
K⊇J

|X(K)|. (1)

The inclusion-exclusion principle gives a formula for X(∅) = X −
⋃

iXi in terms of the sizes |XJ |; namely
the formula

|X(∅)| =
∑
K

(−1)|K||XK |.

This can be regarded as a special case of the following more general situation:
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Question 5. Let A be a finite partially ordered set, and suppose we are given integers {ma}a∈A. For a ∈ A,
set

na =
∑
b≤a

ma.

How can we recover the integers ma from the integers na?

Remark 6. To see the inclusion-exclusion principle is a special case of Question 5, we take A to be the
collection of all subsets of {1, . . . , n}, partially ordered by reverse inclusion. For J ∈ A, set mJ = |X(J)|, so
that equation 1 gives

nJ =
∑
K⊇J

mJ = |XJ |.

Proposition 7. Let A be a finite partially ordered set. Then there exists a function µ : A×A→ Z with the
following property: given any collection of integers {ma}a∈A, if we set

na =
∑
b≤a

ma,

then ma =
∑

b∈A µ(b, a)na.

The function µ : A×A→ Z is called the Möbius function of the partially ordered set A.

Proof. In the last lecture, we proved that the partial ordering on A can be refined to a linear ordering. That
is, we can write A = {a1, a2, . . . , ak}, where ai ≤ aj only when i = j. Let M be the k-by-k matrix given by

Mi,j =

{
1 if ai ≤ aj
0 otherwise

We can then regard a collection of integers {ma}a∈A as a column vector

(ma1 ,ma2 , . . . ,mak
).

Then
naj =

∑
ai≤aj

mai =
∑

1≤i≤k

Mi,jmai ,

so that {na}a∈A is the column vector obtained by acting by the matrix Mi,j . To have

ma =
∑
b∈A

µ(b, a)na,

we want the matrix {µ(ai, aj)} to be an inverse of the matrix Mi,j . To guarantee that this matrix exists, it
suffices to know that the determinant of the matrix Mi,j is equal to 1. This follows from the fact that Mi,j

is a lower triangular matrix with 1’s along the diagonal.

Of course, Proposition 7 by itself does not recover the inclusion-exclusion principle. It tells us only that
there exists a formula of the form

|X −
⋃
i

Xi| =
∑
J

cJ |XJ |,

for some integers cJ (determined by the Möbius function of the partially ordered set P ({1, . . . , n})). To see
that cJ = (−1)|J|, we need to know something about the function µ appearing in Proposition 7. We will
take this up in the next lecture.
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