
Math 155 (Lecture 2)

September 1, 2011

The goal of this lecture is to introduce a basic technique in combinatorics: the method of generating
functions. Let begin with a simple counting problem.

Question 1. How many ways are there to tile a 2-by-n board with dominoes?

The answer, of course, is an integer which depends on n. Let’s denote that integer by Tn.

Example 2. We have T1 = 1; the unique tiling may be depicted as

u

t

Example 3. We have T2 = 2. The two tilings may be depicted as

u u @ A

t t @ A

Example 4. We have T3 = 3. The three tillings are given by

u u u u @ A @ A u

t t t t @ A @ A t

Example 5. We have T4 = 5. The five tilings may be depicted

u u u u @ A @ A

t t t t @ A @ A

u u @ A @ A u u

t t @ A @ A t t
and

u @ A u

t @ A t
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To say something about the integers Tn in general, we observe that they satisfy a recurrence relation.
We can derive this relation as follows. Let Xn be the set of all domino tilings of a 2-by-n board, so that
Tn = |Xn|. We can partition Xn into a pair of subsets X+

n and X−n as follows:

• Let X+
n be the set of all tilings where the leftmost column is filled with a vertically placed domino. To

describe an element of X+
n , we just need to give a domino tiling of the remaining 2-by-(n− 1) board,

so that |X+
n | = Tn−1.

• Let X−n be the complement of X+
n . Then X−n consists of those domino tilings of a 2-by-n board where

the far left is tiled by a pair of horizontally placed dominoes. To specify an element of X−n , we just
need to describe the tiling of the remaining 2-by-(n− 2) board, so that |X−n | = Tn−2.

From the analysis, we deduce the following recurrence relation:

Tn = |Xn| = |X+
n |+ |X−n | = Tn−1 + Tn−2.

From this we can quickly compute other values of T :

T5 = T4 + T3 = 5 + 3 = 8

T6 = T5 + T4 = 8 + 5 = 13

· · ·

Remark 6. It is convenient to adopt the convention that T0 = 1: that is, there is a unique tiling of the
empty board. This is consistent with our recurrence relation, which dictates T0 = T2 − T1 = 2− 1.

In other words, {Tn}n≥0 is the famous Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Let us now go further and find a closed-form expression for the sequence {Tn}n≥0. For this, we introduce
the following formal expression

F (x) =
∑
n≥0

Tnx
n.

Here F (x) is a power series in a variable x. This power series actually converges for x sufficiently small, but
we do not really need to know this: we will treat F (x) as a formal algebraic expression.

Let us now see what our recurrence relation says about F (x). We have

F (x) =
∑
n≥0

Tnx
n

= 1 + x+
∑
n≥2

Tnx
n

= 1 + x+
∑
n≥2

(Tn−1 + Tn−2)xn

= 1 + x+ x(
∑
n≥2

Tn−1x
n−1) + x2(

∑
n≥2

Tn−2x
n−2)

= 1 + x+ x(
∑
n≥1

Tnx
n) + x2(

∑
n≥2

Tnx
n)

= 1 + x+ x(F (x)− 1) + x2F (x)

= 1 + (x+ x2)F (x).
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Solving this equation, we get

F (x) =
1

1− x− x2
.

Let φ = 1+
√
5

2 denote the golden ratio, so that the roots of the quadratic 1 − x − x2 are given by −φ and
φ−1 = 1

φ . We therefore have 1−x−x2 = (1+ x
φ )(1−φx). We therefore have a partial fraction decomposition

of F (x), given by

F (x) =
λ

1 + x
φ

+
µ

1− φx
,

where the scalars λ and µ satisfy

λ(1− φx) + µ(1 +
x

φ
) = 1.

Extracting coefficients of x, we deduce

−λφ+
µ

φ
= 0,

so that µ = φ2λ. Taking constant terms, we get λ+ µ = λ(1 + φ2) = 1, so that λ = 1
1+φ2 . Thus

F (x) =
1

1 + φ2
1

1 + x
φ

+
φ2

1 + φ2
1

1− φx

=
1

1 + φ2

∑
n≥0

(
−1

φ
)nxn +

φ2

1 + φ2

∑
n≥0

φnxn

Extracting the coefficient of xn, we obtain the closed form expression

Tn =
1

1 + φ2
(
−1

φ
)n +

φ2

1 + φ2
φn

Remark 7. The expression −1φ has absolute value less than one. For n large, the first term in our expression
for Tn becomes very small, so that

Tn ≈
φn+2

1 + φ2
.

Let us now describe consider another counting problem which we can approach using generating functions.
Let n and k be nonnegative integers. We let

{
n
k

}
denote the number of ways to partition the set {1, . . . , n}

into k (unlabelled) nonempty subsets. The numbers
{
n
k

}
are called Stirling numbers of the second kind. For

example, we have
{
4
2

}
= 7, because we can decompose {1, 2, 3, 4} into two subsets in precisely seven ways:

{1, 2} ∪ {3, 4} {1, 3} ∪ {2, 4} {1, 4} ∪ {2, 3}

{1} ∪ {2, 3, 4} {2} ∪ {1, 3, 4} {3} ∪ {1, 2, 4} {4} ∪ {1, 2, 3}.

The following is a prototypical problem in enumerative combinatorics:

• Give a closed-form expression for the Stirling numbers
{
n
k

}
.

Let us illustrate an algebraic approach to this problem, at least for small values of k. We begin by showing
that the Stirling numbers

{
n
k

}
satisfy a recurrence relation: for n > 0, we have{

n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
.

To see this, let S be the collection of all ways to partition the set {1, . . . , n} into k nonempty subsets. We
divide S into two subsets:
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• Let S0 be the collection of all partitions of {1, . . . , n} into a collection of subsets which includes {n}. To
give an element of S0, we need to specify the other k−1 subsets, which partition the set {1, . . . , n−1}.
It follows that |S0| =

{
n−1
k−1
}

.

• Let S1 be the collection of all partitions of {1, . . . , n} into a collection of subsets which does not include
{n}. Every such partition determines a partition of {1, . . . , n− 1} into k subsets. We can then recover
our original partition by adding the element n to any of these k subsets. It follows that

|S1| = k

{
n− 1

k

}
.

Putting these observations together, we obtain the formula{
n

k

}
= |S| = |S0|+ |S1| =

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
.

To apply this recurrence relation, let us again form a generating function. For every integer k, we define
a function Fk(x) by the formula

Fk(x) =

{
0

k

}
+

{
1

k

}
x+

{
2

k

}
x2 +

{
3

k

}
x3 + · · ·

Applying our recurrence relation, we obtain

Fk(x) =
∑{

n

k

}
xn (1)

=
∑{

n− 1

k − 1

}
xn + k

∑{
n− 1

k

}
xn (2)

= xFk−1(x) + kxFk(x). (3)

Manipulating this equation, we obtain

(1− kx)Fk(x) = xFk−1(x)

Fk(x) =
x

1− kx
Fk−1(x).

Note that F0(x) = 1 (there is no way to partition an empty set into a nonempty number of subsets). We
therefore obtain

F1(x) =
x

1− x
= x+ x2 + x3 + · · ·

(This is rather obvious: for every n ≥ 1, there is precisely one way to partition the set {1, . . . , n} into one
nonempty subset.)

F2(x) =
x

1− x
x

1− 2x
=

x2

(1− x)(1− 2x)
.

F3(x) =
x

1− x
x

1− 2x

x

1− 3x
=

x3

(1− x)(1− 2x)(1− 3x)

and so forth. Let us use this to find a closed form expression for the Stirling numbers
{
n
2

}
. We have a partial

fraction decomposition

F2(x) = x2(
1

(1− x)(1− 2x)
)

= x2(
−1

1− x
+

2

1− 2x
)

=
∑
m≥0

(−1 + 2m+1)xm+2.
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For n ≥ 2, we can extract the coefficient of xn to obtain the formula{
n

2

}
= 2n−1 − 1.

Exercise 8. Check this directly from the definition.
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