Math 155 (Lecture 2)

September 1, 2011

The goal of this lecture is to introduce a basic technique in combinatorics: the method of generating
functions. Let begin with a simple counting problem.

Question 1. How many ways are there to tile a 2-by-n board with dominoes?
The answer, of course, is an integer which depends on n. Let’s denote that integer by T,.

Example 2. We have T7 = 1; the unique tiling may be depicted as

N

U
Example 3. We have T5 = 2. The two tilings may be depicted as

1 1 C |
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Example 4. We have T35 = 3. The three tillings are given by

M M 1 M C | C | M
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Example 5. We have Ty = 5. The five tilings may be depicted

M 1 [l I C | C 1
[ L ] (] C a C 1
I M C | [ 7 I I
[ L c | [ 1 L [
and
M C | M
(] C | L



To say something about the integers 7T,, in general, we observe that they satisfy a recurrence relation.
We can derive this relation as follows. Let X, be the set of all domino tilings of a 2-by-n board, so that
T, = | X,]. We can partition X,, into a pair of subsets X, and X, as follows:

e Let X7 be the set of all tilings where the leftmost column is filled with a vertically placed domino. To
describe an element of X7, we just need to give a domino tiling of the remaining 2-by-(n — 1) board,
so that | X,I| = T),—1.

e Let X, be the complement of X,7. Then X, consists of those domino tilings of a 2-by-n board where
the far left is tiled by a pair of horizontally placed dominoes. To specify an element of X, we just
need to describe the tiling of the remaining 2-by-(n — 2) board, so that | X, | = T),_o.

no

From the analysis, we deduce the following recurrence relation:
To = |Xn| = X7+ X | = Toor + Toas
From this we can quickly compute other values of T"
Ts =Ty +1T3=5+3=38

Toe=Ts+ Ty =8+5=13

Remark 6. It is convenient to adopt the convention that T, = 1: that is, there is a unique tiling of the
empty board. This is consistent with our recurrence relation, which dictates To =15 —T7 =2 — 1.

In other words, {7}, }n>0 is the famous Fibonacci sequence
1,1,2,3,5,8,13,21,34,55,89, . ..

Let us now go further and find a closed-form expression for the sequence {T, },>0. For this, we introduce
the following formal expression
F(z) = Z Thz™.

n>0

Here F'(x) is a power series in a variable z. This power series actually converges for z sufficiently small, but
we do not really need to know this: we will treat F'(x) as a formal algebraic expression.
Let us now see what our recurrence relation says about F'(x). We have

F(z) = ZTnsL’”

n>0
= l+a+ )y Tua"
n>2
= l4+z+ Z(Tn,l + Tp_o)z"
n>2
= 14+z+ x(z 1™ 1) + 3:2(2 Tp_px™™?)
n>2 n>2
= l+z+ x(z T,z") + x2(z T,z")
n>1 n>2

= 14+z+z(F(zx)— 1)+ 2°F(x)
= 1+ (z+2?)F(x).
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Solving this equation, we get
Flz) = ——.
(z) 1—2z—2a2

Let ¢ = 1+T\/g denote the golden ratio, so that the roots of the quadratic 1 — x — z2 are given by —¢ and
p—1= é We therefore have 1 —x — 2% = (1+ %)(1—0z). We therefore have a partial fraction decomposition

of F(x), given by
A
Fla) = 5 +—,
where the scalars A and p satisfy
x
A1 = ¢z) + pu(l+ g) =1
Extracting coefficients of z, we deduce
1
—Ap+ = =0,
¢
so that u = ¢?\. Taking constant terms, we get A + p = A(1 + ¢?) = 1, so that A\ = ﬁ Thus
1 1 @2 1
F =
(@) I+¢?1+2  1+¢*1—ga
N 1+¢2n>0 ¢ ’ 1+¢2n>0 ’

Extracting the coefficient of ™, we obtain the closed form expression

_ 2
1 1)n+ ¢ o
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Remark 7. The expression =+ has absolute value less than one. For n large, the first term in our expression
for T;, becomes very small, so that
¢n+2
T, ~ .
1+ ¢?
Let us now describe consider another counting problem which we can approach using generating functions.
Let n and k be nonnegative integers. We let {Z} denote the number of ways to partition the set {1,...,n}

into &k (unlabelled) nonempty subsets. The numbers {Z} are called Stirling numbers of the second kind. For
example, we have {3} =7, because we can decompose {1,2,3,4} into two subsets in precisely seven ways:

(1,2)U{3,4} {1,3}U{2,4} {1,4}U{2,3}
(11U{2,3,4) {2)U{1,3,4} {3}U{L,2,4} {4}U{1,2,3}).

The following is a prototypical problem in enumerative combinatorics:

e Give a closed-form expression for the Stirling numbers {Z}
Let us illustrate an algebraic approach to this problem, at least for small values of k. We begin by showing

that the Stirling numbers {Z} satisfy a recurrence relation: for n > 0, we have
n n—1 n—1
=l
To see this, let S be the collection of all ways to partition the set {1,...,n} into k nonempty subsets. We

divide S into two subsets:



e Let Sy be the collection of all partitions of {1,...,n} into a collection of subsets which includes {n}. To
give an element of Sy, we need to specify the other k — 1 subsets, which partition the set {1,...,n—1}.
It follows that |So| = {71}

e Let S; be the collection of all partitions of {1,...,n} into a collection of subsets which does not include
{n}. Every such partition determines a partition of {1,...,n — 1} into k subsets. We can then recover
our original partition by adding the element n to any of these k subsets. It follows that

-1
'Sl:k{nk }

Putting these observations together, we obtain the formula

()i )

To apply this recurrence relation, let us again form a generating function. For every integer k, we define
a function Fj(z) by the formula

Fu(e) {2} i {;}x 4 {2}# N {2}953 L

Applying our recurrence relation, we obtain

Fy(z)

Il
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xF_1(x) + kxFy(x). (3)

Manipulating this equation, we obtain

(1 — kx)Fy(z) = xFr_1(x)
o
11— kx
Note that Fy(z) = 1 (there is no way to partition an empty set into a nonempty number of subsets). We
therefore obtain

Fk((E) kal(x).

Fl(x):7l' :x+x2+x3+
T

1—
(This is rather obvious: for every n > 1, there is precisely one way to partition the set {1,...,n} into one
nonempty subset.)
2
x x x
Fsr(x) = = .
2@ = T T, (1—2)(1—22)
x x x 3

T 1-z1-201-3z (1-=2)(1—22)(1-32)

and so forth. Let us use this to find a closed form expression for the Stirling numbers {Z} We have a partial
fraction decomposition

Fs(x)

1
(1—x)(1—2x))
5, —1 2
- x(l—x+1—2m)
= (1422,

m>0

Fy(z) = x2(




For n > 2, we can extract the coefficient of ™ to obtain the formula

{"} —on-l_1,
2

Exercise 8. Check this directly from the definition.



