Math 155 (Lecture 2)

September 1, 2011

The goal of this lecture is to introduce a basic technique in combinatorics: the method of generating functions. Let begin with a simple counting problem.

Question 1. How many ways are there to tile a 2-by-n board with dominoes?

The answer, of course, is an integer which depends on n. Let's denote that integer by T_n .

Example 2. We have $T_1 = 1$; the unique tiling may be depicted as

Π

 \square

Example 3. We have $T_2 = 2$. The two tilings may be depicted as П Π \Box \square \Box **Example 4.** We have $T_3 = 3$. The three tillings are given by \square Π \square \Box \square \Box \square ${{\sqcup}}$ \square \square \Box \Box ${\color{black}\square}$ **Example 5.** We have $T_4 = 5$. The five tilings may be depicted \square \square \square \Box Π \Box \square \square \square \square \Box \Box \Box \square \square \Box \Box \square Π \Box \square \Box \Box \square and Π Π \Box ${\color{black}\square}$ \Box \Box

To say something about the integers T_n in general, we observe that they satisfy a *recurrence relation*. We can derive this relation as follows. Let X_n be the set of all domino tilings of a 2-by-n board, so that $T_n = |X_n|$. We can partition X_n into a pair of subsets X_n^+ and X_n^- as follows:

- Let X_n^+ be the set of all tilings where the leftmost column is filled with a vertically placed domino. To describe an element of X_n^+ , we just need to give a domino tiling of the remaining 2-by-(n-1) board, so that $|X_n^+| = T_{n-1}$.
- Let X_n^- be the complement of X_n^+ . Then X_n^- consists of those domino tilings of a 2-by-*n* board where the far left is tiled by a pair of horizontally placed dominoes. To specify an element of X_n^- , we just need to describe the tiling of the remaining 2-by-(n-2) board, so that $|X_n^-| = T_{n-2}$.

From the analysis, we deduce the following recurrence relation:

$$T_n = |X_n| = |X_n^+| + |X_n^-| = T_{n-1} + T_{n-2}.$$

From this we can quickly compute other values of T:

$$T_5 = T_4 + T_3 = 5 + 3 = 8$$

 $T_6 = T_5 + T_4 = 8 + 5 = 13$
...

Remark 6. It is convenient to adopt the convention that $T_0 = 1$: that is, there is a unique tiling of the empty board. This is consistent with our recurrence relation, which dictates $T_0 = T_2 - T_1 = 2 - 1$.

In other words, $\{T_n\}_{n\geq 0}$ is the famous Fibonacci sequence

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots$$

Let us now go further and find a *closed-form* expression for the sequence $\{T_n\}_{n\geq 0}$. For this, we introduce the following formal expression

$$F(x) = \sum_{n \ge 0} T_n x^n.$$

Here F(x) is a power series in a variable x. This power series actually converges for x sufficiently small, but we do not really need to know this: we will treat F(x) as a formal algebraic expression.

Let us now see what our recurrence relation says about F(x). We have

$$F(x) = \sum_{n \ge 0} T_n x^n$$

= $1 + x + \sum_{n \ge 2} T_n x^n$
= $1 + x + \sum_{n \ge 2} (T_{n-1} + T_{n-2}) x^n$
= $1 + x + x (\sum_{n \ge 2} T_{n-1} x^{n-1}) + x^2 (\sum_{n \ge 2} T_{n-2} x^{n-2})$
= $1 + x + x (\sum_{n \ge 1} T_n x^n) + x^2 (\sum_{n \ge 2} T_n x^n)$
= $1 + x + x (F(x) - 1) + x^2 F(x)$
= $1 + (x + x^2) F(x).$

Solving this equation, we get

$$F(x) = \frac{1}{1 - x - x^2}.$$

Let $\phi = \frac{1+\sqrt{5}}{2}$ denote the golden ratio, so that the roots of the quadratic $1 - x - x^2$ are given by $-\phi$ and $\phi - 1 = \frac{1}{\phi}$. We therefore have $1 - x - x^2 = (1 + \frac{x}{\phi})(1 - \phi x)$. We therefore have a partial fraction decomposition of F(x), given by

$$F(x) = \frac{\lambda}{1 + \frac{x}{\phi}} + \frac{\mu}{1 - \phi x},$$

where the scalars λ and μ satisfy

$$\lambda(1 - \phi x) + \mu(1 + \frac{x}{\phi}) = 1.$$

Extracting coefficients of x, we deduce

$$-\lambda\phi + \frac{\mu}{\phi} = 0,$$

so that $\mu = \phi^2 \lambda$. Taking constant terms, we get $\lambda + \mu = \lambda(1 + \phi^2) = 1$, so that $\lambda = \frac{1}{1 + \phi^2}$. Thus

$$F(x) = \frac{1}{1+\phi^2} \frac{1}{1+\frac{x}{\phi}} + \frac{\phi^2}{1+\phi^2} \frac{1}{1-\phi x}$$
$$= \frac{1}{1+\phi^2} \sum_{n\geq 0} (\frac{-1}{\phi})^n x^n + \frac{\phi^2}{1+\phi^2} \sum_{n\geq 0} \phi^n x^n$$

Extracting the coefficient of x^n , we obtain the closed form expression

$$T_n = \frac{1}{1+\phi^2} (\frac{-1}{\phi})^n + \frac{\phi^2}{1+\phi^2} \phi^n$$

Remark 7. The expression $\frac{-1}{\phi}$ has absolute value less than one. For *n* large, the first term in our expression for T_n becomes very small, so that

$$T_n \approx \frac{\phi^{n+2}}{1+\phi^2}.$$

Let us now describe consider another counting problem which we can approach using generating functions. Let n and k be nonnegative integers. We let $\binom{n}{k}$ denote the number of ways to partition the set $\{1, \ldots, n\}$ into k (unlabelled) nonempty subsets. The numbers $\binom{n}{k}$ are called *Stirling numbers of the second kind*. For example, we have $\binom{4}{2} = 7$, because we can decompose $\{1, 2, 3, 4\}$ into two subsets in precisely seven ways:

 $\{1,2\} \cup \{3,4\} \quad \{1,3\} \cup \{2,4\} \quad \{1,4\} \cup \{2,3\}$

The following is a prototypical problem in enumerative combinatorics:

• Give a closed-form expression for the Stirling numbers $\binom{n}{k}$.

Let us illustrate an algebraic approach to this problem, at least for small values of k. We begin by showing that the Stirling numbers $\binom{n}{k}$ satisfy a *recurrence relation*: for n > 0, we have

$$\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}.$$

To see this, let S be the collection of all ways to partition the set $\{1, \ldots, n\}$ into k nonempty subsets. We divide S into two subsets:

- Let S_0 be the collection of all partitions of $\{1, \ldots, n\}$ into a collection of subsets which includes $\{n\}$. To give an element of S_0 , we need to specify the *other* k-1 subsets, which partition the set $\{1, \ldots, n-1\}$. It follows that $|S_0| = {n-1 \\ k-1}$.
- Let S_1 be the collection of all partitions of $\{1, \ldots, n\}$ into a collection of subsets which does not include $\{n\}$. Every such partition determines a partition of $\{1, \ldots, n-1\}$ into k subsets. We can then recover our original partition by adding the element n to any of these k subsets. It follows that

$$|S_1| = k \begin{Bmatrix} n-1\\k \end{Bmatrix}$$

Putting these observations together, we obtain the formula

$$\binom{n}{k} = |S| = |S_0| + |S_1| = \binom{n-1}{k-1} + k \binom{n-1}{k}.$$

To apply this recurrence relation, let us again form a generating function. For every integer k, we define a function $F_k(x)$ by the formula

$$F_k(x) = {0 \\ k} + {1 \\ k} x + {2 \\ k} x^2 + {3 \\ k} x^3 + \cdots$$

Applying our recurrence relation, we obtain

$$F_k(x) = \sum {\binom{n}{k}} x^n \tag{1}$$

$$= \sum {\binom{n-1}{k-1}} x^n + k \sum {\binom{n-1}{k}} x^n \tag{2}$$

$$= xF_{k-1}(x) + kxF_k(x).$$
(3)

Manipulating this equation, we obtain

$$(1 - kx)F_k(x) = xF_{k-1}(x)$$
$$F_k(x) = \frac{x}{1 - kx}F_{k-1}(x).$$

Note that $F_0(x) = 1$ (there is no way to partition an empty set into a nonempty number of subsets). We therefore obtain

$$F_1(x) = \frac{x}{1-x} = x + x^2 + x^3 + \cdots$$

(This is rather obvious: for every $n \ge 1$, there is precisely one way to partition the set $\{1, \ldots, n\}$ into one nonempty subset.)

$$F_2(x) = \frac{x}{1-x} \frac{x}{1-2x} = \frac{x^2}{(1-x)(1-2x)}.$$

$$F_3(x) = \frac{x}{1-x} \frac{x}{1-2x} \frac{x}{1-3x} = \frac{x^3}{(1-x)(1-2x)(1-3x)}$$

and so forth. Let us use this to find a closed form expression for the Stirling numbers $\binom{n}{2}$. We have a partial fraction decomposition

$$F_2(x) = x^2 \left(\frac{1}{(1-x)(1-2x)}\right)$$

= $x^2 \left(\frac{-1}{1-x} + \frac{2}{1-2x}\right)$
= $\sum_{m \ge 0} (-1+2^{m+1})x^{m+2}.$

For $n \ge 2$, we can extract the coefficient of x^n to obtain the formula

$$\binom{n}{2} = 2^{n-1} - 1.$$

Exercise 8. Check this directly from the definition.