Math 155 (Lecture 19)

October 18, 2011

We begin this lecture with a review of partially ordered sets.
Definition 1. Let A be a set. A partial ordering of A is a binary relation \leq satisfying the following axioms:
(Reflexivity) For each $a \in A$, we have $a \leq a$.
(Transitivity) If $a \leq b$ and $b \leq c$, then $a \leq c$.
(Antisymmetry) If $a \leq b$ and $b \leq a$, then $a=b$.
A partially ordered set is a pair (A, \leq), where A is a set and \leq is a partial ordering on A.
Example 2. Let A be the set of real numbers (or rational numbers, or integers). Define $a \leq b$ if $b-a$ is nonnegative. Then \leq is a partial ordering on A.

Example 3. Let S be a set, and let $P(S)$ denote the collection of all subsets of S. For $T, T^{\prime} \in P(S)$, write $T \leq T^{\prime}$ if $T \subseteq T^{\prime}$. This relation makes $P(S)$ into a partially ordered set.

Example 4. Let $\mathbf{Z}_{>0}$ be the set of positive integers. Then $\mathbf{Z}_{>0}$ is partially ordered by divisibility: we can define $a \leq b$ if and only if $a \mid b$.
Definition 5. Let A be a partially ordered set. We say that an element $a \in A$ is a least element of A if $a \leq b$ for all $b \in A$. We say that a is a minimal element of A if $b \leq a$ implies $b=a$.

We say that $a \in A$ is a greatest element if $b \leq a$ for all $b \in A$. We say that $a \in A$ is a maximal element if $b \geq a$ implies $b=a$.

Let A be a partially ordered set. If A has a least element a, then a is unique, and is also a minimal element of A. However, the converse fails: a minimal element of A is generally not a least element of A, and a partially ordered set A can have many minimal elements (in which case none of them can be least elements).

Example 6. Let A be an arbitrary set. For $a, b \in A$, write $a \leq b$ if $a=b$. Then \leq is a partial ordering on A, which is called the discrete ordering. Every element of A is minimal (and maximal). However, A has no least (or greatest) element unless it has only a single element.

Since this is a course in combinatorics, we will be mostly interested in the case of finite linearly ordered sets.

Lemma 7. Let A be a finite partially ordered set. If A is nonempty, then A has at least one minimal element.

Proof. Since A is nonempty, we can choose an element $a_{0} \in A$. If A is minimal, then we are done. Otherwise, there exists an element a_{1} such that $a_{1} \leq a_{0}$ and $a_{1} \neq a_{0}$. If a_{1} is minimal, then we are done. Otherwise we can choose an element a_{2} such that $a_{2} \leq a_{1}$ and $a_{2} \neq a_{1}$. Proceeding in this way, we produce a sequence

$$
a_{0} \geq a_{1} \geq a_{2} \geq \cdots
$$

Since A is finite, this sequence must have some repeated terms: that is, we must have $a_{i}=a_{j}$ for some $j \neq i$. Without loss of generality we may assume that $j>i$. Then $a_{i}=a_{j} \leq a_{i+1}$ and $a_{i+1} \leq a_{i}$. Using antisymmetry we deduce that $a_{i+1}=a_{i}$, which contradicts our choice of a_{i+1}.
Remark 8. The proof of Lemma 7 actually shows something stronger. Namely, if A is finite, then for every $a \in A$ we can find a minimal element $b \in A$ such that $b \leq a$.

Definition 9. Let (A, \leq) be a partially ordered set. We say that \leq is a linear ordering on A if, for every pair of elements $a, b \in A$, we have either $a \leq b$ or $b \leq a$. In this case, we also say that \leq is a total ordering of A, that A is a linearly ordered set, or that A is a totally ordered set.

Example 10. The usual ordering on the real numbers (or rational numbers, or integers) is a linear ordering. The partial ordering of Examples 3 and 4 are not linear orderings.

Remark 11. If A is a linearly ordered set, then every minimal element of A is a least element of A. Using Lemma 7 , we deduce that if A is finite and nonempty, then it contains a least element. The same argument shows that A has a greatest element.

We have already considered finite linearly ordered sets in our study of species. These have a very simple structure:

Proposition 12. Let A be a finite linearly ordered set. Then there is a unique order-preserving bijection $\pi:\{1,2, \ldots, n\} \rightarrow A$, for some integer n.

Proof. Take n to be the number of elements of A, and work by induction on n. If $n>0$, then A has a greatest element a (Remark 11), and the bijection π must clearly satisfy $\pi(n)=a$. Now apply the inductive hypothesis to the set $A-\{a\}$.

Definition 13. Let A be a partially ordered set. Then any subset $A_{0} \subseteq A$ inherits the structure of a partially ordered set. We say that A_{0} is a chain if it is linearly ordered, and that A_{0} is an antichain if the ordering on A_{0} is discrete (Example 6).

Up to isomorphism, we can produce all partially ordered sets by combining Example 3 with the preceding observation.

Proposition 14. Let A be a partially ordered set. Then A is isomorphic (as a partially ordered set) to a subset of $P(S)$, for some set S.

Proof. For each $a \in A$, let $A_{\leq a}=\{b \in A: b \leq a\}$. The construction $a \mapsto A_{\leq a}$ determines a map $\phi: A \rightarrow P(A)$. We claim that ϕ is an isomorphism of partially ordered sets from A onto a subset of $P(A)$. In other words, we claim that:
(i) The map ϕ is injective.
(ii) For $a, b \in A$, we have $a \leq b$ if and only if $\phi(a) \subseteq \phi(b)$.

Note that (i) is just a special case of $(i i)$: if $(i i)$ is satisfied and $\phi(a)=\phi(b)$, then $a \leq b$ and $b \leq a$ so that $a=b$ by antisymmetry.

To prove (ii), we first note that if $a \leq b$ and $c \in A_{\leq a}$, then $c \leq a$. By transitivity we get $c \leq b$ so that $c \in A_{\leq b}$. This proves that $\phi(a) \subseteq \phi(b)$. Conversely, suppose that $a, b \in A$ are arbitrary and that $A_{\leq a} \subseteq A_{\leq b}$. Since $a \in A_{\leq a}$, we deduce that $a \in A_{\leq b}$, which means that $a \leq b$.

Definition 15. Let $\left(A, \leq_{A}\right)$ and $\left(B, \leq_{B}\right)$ be partially ordered sets. We say that a map $\phi: A \rightarrow B$ is order-preserving, or monotone, if $a \leq_{A} a^{\prime}$ implies $\phi(a) \leq_{B} \phi\left(a^{\prime}\right)$.

Proposition 16. Let A be a partially ordered set. Then there exists an order-preserving bijection $\phi: A \rightarrow B$, where B is a linearly ordered set.

In other words, any partial ordering on a set A can be refined to a linear ordering.
Proof. We will give the proof when A is finite (the result is still true when A is infinite, at least if you are willing to assume the axiom of choice). Let $n=|A|$, and proceed by induction on n. The case $n=0$ is trivial. Assume therefore that $n>0$, so that A is nonempty. Let $a \in A$ be a maximal element (Lemma 7). The inductive hypothesis (together with Proposition 12, say) imply that there exists an order-preserving bijection $\phi_{0}: A-\{a\} \rightarrow\{1,2, \ldots, n-1\}$. We now extend ϕ_{0} to a map $\phi: A \rightarrow\{1, \ldots, n\}$ by setting $\phi(a)=n$. Since a was chosen maximal, this map is order-preserving.

If A is a finite partially ordered set, then the width of A is defined to be the maximum size of an antichain of A. Note that A is linearly ordered if and only if it has width ≤ 1 (that is, it has no 2 -element antichains).

Question 17. Let S be a finite set of size n. What is the width of $P(S)$?
To get an answer to this question, we should try to find some antichains in $P(S)$. There are some obvious choices. For example, fix an integer $k \leq n$, and let $P_{k}(S)=\{T \subseteq S:|T|=k\}$. Then $P_{k}(S)$ is an antichain: if T and T^{\prime} are two different subsets of S both having size k, then neither can contain the other. The number of elements of $P_{k}(S)$ is given by the binomial coefficient $\binom{n}{k}$. This gives a lower bound for the width of $P(S)$: it must be at least $\binom{n}{k}$, for each $0 \leq k \leq n$.

Theorem 18 (Sperner). Let S be a set of size n. Then the width of $P(S)$ is $\max \left\{\binom{n}{k}\right\}_{0 \leq k \leq n}$.
We can be more precise: it is not hard to see that the binomial coefficient $\binom{n}{k}$ is maximized when k is as close to $\frac{n}{2}$ as possible. We therefore see that the width of $P(S)$ is $\binom{n}{m}$, where

$$
m= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n-1}{2} & \text { if } n \text { is odd }\end{cases}
$$

Proof of Theorem 18. Let $C=\max \left\{\binom{n}{k}\right\}_{0 \leq k \leq n}$, and let $K_{1}, K_{2}, \ldots, K_{q}$ be an antichain in $P(S)$. We wish to show that $q \leq C$.

Let X be the set of all bijections $\pi:\{1, \ldots, n\} \rightarrow S$, so that X has n ! elements. For each $1 \leq i \leq q$, let $X_{i} \subseteq X$ be the collection of those bijections for which

$$
K_{i}=\pi^{-1}\left\{1, \ldots,\left|K_{i}\right|\right\} .
$$

To give an element of X_{i}, we must give separate bijections

$$
\left\{1, \ldots,\left|K_{i}\right|\right\} \rightarrow K_{i} \quad\left\{\left|K_{i}\right|+1, \ldots, n\right\} \rightarrow S-K_{i} .
$$

It follows that $\left|X_{i}\right|=k_{i}!\left(n-k_{i}\right)!$, where $k_{i}=\left|K_{i}\right|$.
We claim that the sets X_{i} are disjoint. To prove this, consider a permutation $\pi \in X_{i} \cap X_{j}$. We may assume without loss of generality that $k_{i} \leq k_{j}$. Then $\left\{1, \ldots, k_{i}\right\} \subseteq\left\{1, \ldots, k_{j}\right\}$, so that

$$
K_{i}=\pi^{-1}\left\{1, \ldots, k_{i}\right\} \subseteq \pi^{-1}\left\{1, \ldots, k_{j}\right\}=K_{j}
$$

Since K_{1}, \ldots, K_{q} is an antichain, we deduce that $i=j$.

We now deduce

$$
\begin{aligned}
n! & =|X| \\
& \geq \sum_{1 \leq i \leq q}\left|X_{i}\right| \\
& =\sum_{1 \leq i \leq q} k_{i}!\left(n-k_{i}\right)! \\
& =\sum_{1 \leq i \leq q} \frac{n!}{\binom{n}{k_{i}}} \\
& \geq \sum_{1 \leq i \leq q} \frac{n!}{C} \\
& =n!\frac{q}{C}
\end{aligned}
$$

Multiplying by C and dividing by $n!$, we get $q \leq C$.

