Math 155 (Lecture 19)

October 18, 2011

We begin this lecture with a review of partially ordered sets.
Definition 1. Let A be a set. A partial ordering of A is a binary relation < satisfying the following axioms:
(Reflexivity) For each a € A, we have a < a.
(Transitivity) If a < b and b < ¢, then a < c.
(Antisymmetry) If a < b and b < a, then a = b.
A partially ordered set is a pair (A, <), where A is a set and < is a partial ordering on A.

Example 2. Let A be the set of real numbers (or rational numbers, or integers). Define a < b if b — a is
nonnegative. Then < is a partial ordering on A.

Example 3. Let S be a set, and let P(S) denote the collection of all subsets of S. For T, T" € P(S), write
T <T'if T CT'. This relation makes P(S) into a partially ordered set.

Example 4. Let Z-( be the set of positive integers. Then Z~ is partially ordered by divisibility: we can
define a < b if and only if a|b.

Definition 5. Let A be a partially ordered set. We say that an element a € A is a least element of A if
a <bfor all b € A. We say that a is a minimal element of A if b < a¢ implies b = a.

We say that a € A is a greatest element if b < a for all b € A. We say that a € A is a mazimal element if
b > a implies b = a.

Let A be a partially ordered set. If A has a least element a, then a is unique, and is also a minimal
element of A. However, the converse fails: a minimal element of A is generally not a least element of A,
and a partially ordered set A can have many minimal elements (in which case none of them can be least
elements).

Example 6. Let A be an arbitrary set. For a,b € A, write a < b if a =b. Then < is a partial ordering on
A, which is called the discrete ordering. Every element of A is minimal (and maximal). However, A has no
least (or greatest) element unless it has only a single element.

Since this is a course in combinatorics, we will be mostly interested in the case of finite linearly ordered
sets.

Lemma 7. Let A be a finite partially ordered set. If A is nonempty, then A has at least one minimal
element.

Proof. Since A is nonempty, we can choose an element ag € A. If A is minimal, then we are done. Otherwise,
there exists an element a; such that a; < ag and a; # ag. If a7 is minimal, then we are done. Otherwise we
can choose an element ao such that as < a; and as # a;. Proceeding in this way, we produce a sequence

ap>ay > ay > -+



Since A is finite, this sequence must have some repeated terms: that is, we must have a; = a; for some
j # i. Without loss of generality we may assume that j > 4. Then a; = a; < a;41 and a;4+1 < a;. Using
antisymmetry we deduce that a;11 = a;, which contradicts our choice of a;1. O

Remark 8. The proof of Lemma 7 actually shows something stronger. Namely, if A is finite, then for every
a € A we can find a minimal element b € A such that b < a.

Definition 9. Let (A, <) be a partially ordered set. We say that < is a linear ordering on A if, for every
pair of elements a,b € A, we have either a < b or b < a. In this case, we also say that < is a total ordering
of A, that A is a linearly ordered set, or that A is a totally ordered set.

Example 10. The usual ordering on the real numbers (or rational numbers, or integers) is a linear ordering.
The partial ordering of Examples 3 and 4 are not linear orderings.

Remark 11. If A is a linearly ordered set, then every minimal element of A is a least element of A. Using
Lemma 7, we deduce that if A is finite and nonempty, then it contains a least element. The same argument
shows that A has a greatest element.

We have already considered finite linearly ordered sets in our study of species. These have a very simple
structure:

Proposition 12. Let A be a finite linearly ordered set. Then there is a unique order-preserving bijection
m:{1,2,...,n} = A, for some integer n.

Proof. Take n to be the number of elements of A, and work by induction on n. If n > 0, then A has a
greatest element a (Remark 11), and the bijection 7 must clearly satisfy 7(n) = a. Now apply the inductive
hypothesis to the set A — {a}. O

Definition 13. Let A be a partially ordered set. Then any subset Ay C A inherits the structure of a
partially ordered set. We say that Ag is a chain if it is linearly ordered, and that Ay is an antichain if the
ordering on Ay is discrete (Example 6).

Up to isomorphism, we can produce all partially ordered sets by combining Example 3 with the preceding
observation.

Proposition 14. Let A be a partially ordered set. Then A is isomorphic (as a partially ordered set) to a
subset of P(S), for some set S.

Proof. For each a € A, let A<, = {b € A : b < a}. The construction a — A<, determines a map
¢: A— P(A). We claim that ¢ is an isomorphism of partially ordered sets from A onto a subset of P(A).
In other words, we claim that:

() The map ¢ is injective.
(#4) For a,b € A, we have a < b if and only if ¢(a) C ¢(b).

Note that (i) is just a special case of (ii): if (i7) is satisfied and ¢(a) = ¢(b), then a < b and b < a so that
a = b by antisymmetry.

To prove (i), we first note that if a < b and ¢ € A<,, then ¢ < a. By transitivity we get ¢ < b so that
¢ € A<p. This proves that ¢(a) C ¢(b). Conversely, suppose that a,b € A are arbitrary and that A<, C A<y,
Since a € A<,, we deduce that a € A<y, which means that a <b. O

Definition 15. Let (A,<4) and (B,<p) be partially ordered sets. We say that a map ¢ : A — B is
order-preserving, or monotone, if a <4 a’ implies ¢(a) <p ¢(a’).

Proposition 16. Let A be a partially ordered set. Then there exists an order-preserving bijection ¢ : A — B,
where B is a linearly ordered set.



In other words, any partial ordering on a set A can be refined to a linear ordering.

Proof. We will give the proof when A is finite (the result is still true when A is infinite, at least if you are
willing to assume the axiom of choice). Let n = |A|, and proceed by induction on n. The case n = 0 is
trivial. Assume therefore that n > 0, so that A is nonempty. Let a € A be a maximal element (Lemma
7). The inductive hypothesis (together with Proposition 12, say) imply that there exists an order-preserving
bijection ¢o : A — {a} = {1,2,...,n — 1}. We now extend ¢y to a map ¢ : A — {1,...,n} by setting
¢(a) = n. Since a was chosen maximal, this map is order-preserving. O

If A is a finite partially ordered set, then the width of A is defined to be the maximum size of an antichain
of A. Note that A is linearly ordered if and only if it has width < 1 (that is, it has no 2-element antichains).

Question 17. Let S be a finite set of size n. What is the width of P(S)?

To get an answer to this question, we should try to find some antichains in P(S). There are some obvious
choices. For example, fix an integer k < n, and let Py (S) ={T C S : |T| = k}. Then P,(S) is an antichain:
if T and T” are two different subsets of S both having size k, then neither can contain the other. The number
of elements of Py (S) is given by the binomial coefficient (}). This gives a lower bound for the width of P(S):
it must be at least (Z)7 foreach 0 < k <n.

Theorem 18 (Sperner). Let S be a set of size n. Then the width of P(S) is max{(}) }o<k<n-

We can be more precise: it is not hard to see that the binomial coefficient (Z) is maximized when k is as

close to % as possible. We therefore see that the width of P(S) is ("), where

% if n is even
m =

n—1 : :

=2 if n is odd.

Proof of Theorem 18. Let C = max{(’;) Yo<k<n, and let K1, Ko, ..., K, be an antichain in P(S). We wish
to show that ¢ < C.

Let X be the set of all bijections 7 : {1,...,n} — S, so that X has n! elements. For each 1 <1i < ¢, let
X; € X be the collection of those bijections for which

Ki = 7'('_1{17 ceey ‘Kz”’
To give an element of X;, we must give separate bijections
It follows that |Xz| = kl'(n - kz)', where kz = |Kz|
We claim that the sets X; are disjoint. To prove this, consider a permutation 7 € X; N X;. We may
assume without loss of generality that k; < k;. Then {1,...,k;} C {1,...,k;}, so that

Ki :7_(_71{17”.7]%} gﬂ'il{l,...,k‘j}zK]‘.

Since K7, ..., K, is an antichain, we deduce that i = j.



We now deduce

n!

Y]

Y

1<i<gq

n!g.

Multiplying by C' and dividing by n!, we get ¢ < C.



