
Math 155 (Lecture 17)

October 14, 2011

Our goal in this lecture is to study the behavior of the cycle index under composition of species. More
precisely, we have the following result:

Theorem 1. For every species S and every integer i ≥ 1, let Z
(i)
S (s1, s2, . . .) = ZS(si, s2i, s3i, . . .). If T is a

species with T [∅] = ∅, then we have

ZS◦T (s1, s2, . . .) = ZS(ZT (s1, s2, . . .), ZT (s2, s4, . . .), . . .) = ZS(Z
(1)
T , Z

(2)
T , Z

(3)
T , . . .).

Before giving a proof of Theorem 1, let us see that it generalizes several things that we already know.

Example 2. Let S and T be species with T [∅] = ∅. Then ZT (0, 0, . . .) = 0, so that

FS◦T (x) = ZS◦T (x, 0, . . .)

= ZS(ZT (x, 0, . . .), ZT (0, 0, . . .), . . .)

= ZS(FT (x), 0, 0, . . .)

= FS(FT (x)).

In other words, Theorem 1 generalizes our formula

FS◦T = FS ◦ FT

for the composition of species.

Example 3. Let G be a subgroup of the permutation group of a finite set X, and let H be a subgroup of
the permutation group of a finite nonempty set Y ¿ Consider the species T = S(G,X) ◦ S(H,Y ). By definition,
a T -structure on a finite set J consists of the following data:

(i) An equivalence relation ∼ on J .

(ii) A bijection of J/ ∼' X, which is well-defined up to the action of G.

(iii) A bijection of each equivalence class E ∈ J/ ∼ with Y , which is well-defined up to the action of H.

In particular, every T -structure is isomorphic to (X×Y, η), where η is the T -structure on X×Y corresponding
to the equivalence relation of “having the same X-coordinate”, where we take the bijections described in (ii)
and (iii) to be the identity maps. It follows that T is a molecular species.

Let us compute the automorphism group of (X × Y, η). By definition, it is the group of all permutations
π of X × Y which have the following properties:

• π preserves the equivalence relation of “having the same X-coordinate”. That is, we can write π(x, y) =
(σ(x), τx(y)) for some permutation σ : X → X. Note that for each x ∈ X, we have

τx(y) = τx(y′)⇔ π(x, y) = π(x, y′)⇔ y = y′,

so that τx is a permutation of X.
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• The permutation σ : X → X preserves the S(G,X)-structure given by the identity bijection id : X → X.
That is, σ ∈ G.

• For each x ∈ X, the permutation τx : Y → Y belongs to the group H.

In other words, we can identify elements of the automorphism group Aut(X × Y, η) with pairs (σ, {τx}x∈X)
where σ ∈ G and each τx belongs to H. It is not difficult to show that this group coincides with the wreath
product H oG we studied in a previous lecture, with its canonical action on X × Y . Theorem 1 then gives

ZHoG(s1, s2, . . .) = ZT (s1, s2, . . .)

= ZS(G,X)
(ZS(H,Y )

(s1, s2, . . .)ZS(H,Y )
(s2, s4, . . .), . . .)

= ZG(ZH(s1, s2, . . .), ZH(s2, s4, . . .), . . .).

which recovers our formula for the cycle index of a wreath product of two group actions.

Example 4. Let G be a finite group acting on a finite set X of size n and let S = S(G,X). Fix a finite set
{c1, c2, . . . , ct}, and define a species T by the formula

T [I] =

{
{c1, . . . , ct} if |I| = 1

∅ if |I| 6= 1.

The cycle index of T is given by the formula

ZT =
∑
n≥0

1

n!

∑
σ∈Σn

|T [〈n〉]σ|Zσ = |T [〈1〉]|Zid〈1〉 = ts1.

For every finite set Y , an element of (S ◦ T )[Y ] consists of the following data:

(i) An equivalence relation ∼ on Y .

(ii) An element of the set S[Y/ ∼] = G\Bij(X,Y/ ∼).

(iii) For each equivalence class E ∈ Y/ ∼, an element of T [E].

Data (iii) can be supplied only when each equivalence class E has size 1, in which case the equivalence
relation ∼ is trivial (that is, Y/ ∼ can be identified with Y ). In this case, data (ii) consists of an element
of G\Bij(X,Y ), while data (iii) is a map Y → {c1, . . . , ct}: that is, a coloring of Y with the set of colors
{c1, . . . , ct}.

Without loss of generality, we can take X = {1, . . . , n}, so that X is acted on by the group Σn. Then
the isomorphism classes of S ◦ T -structures are parametrized by the quotient

((G\Bij(X,X))× {c1, . . . , ct}X)/Σn ' G\((Bij(X,X)× {c1, . . . , ct}X)/Σn) ' G\{c1, . . . , ct}X .

We therefore obtain ∑
m≥0

|(S ◦ T )[〈m〉]/Σm|xm = |G\{c1, . . . , ct}X |xn

Using Theorem 1, we see that this is given by

ZS◦T (x, x2, x3, . . .) = ZS(ZT (x, x2, . . .), ZT (x2, x4, . . .), . . .)

= ZS(tx, tx2, tx3, . . .)

= ZG(tx, tx2, tx3, . . .).

Taking x = 1, we recover Polya’s enumeration theorem

|G\{c1, . . . , ct}X | = ZG(t, t, t, . . .).
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Remark 5. We can recover the more refined version of Polya’s theorem (which keeps track of the number
of times each color is used) using an analogue of Theorem 1 in the setting of multivariate species: that is,
species which depend on several variables, rather than just one. We will not pursue this point further.

Proof of Theorem 1. Let us examine the cycle index of the composition S ◦ T . If X is a finite set, we will
identify the elements of (S◦T )[X] with triples (∼, η, ρ), where ∼ is an equivalence relation on X, η ∈ S[X/ ∼],
and ρ ∈

∏
E∈S/∼ T [E]. We can write

ZS◦T =
∑
n≥0

1

n!

∑
π∈Σn

∑
π(∼,η,ρ)=(∼,η,ρ)

Zπ.

Let ZS◦T,m be the sum of all those terms where the quotient 〈n〉/ ∼ has size exactly m, so that ZS◦T =∑
m≥0 ZS◦T,m. Fix a bijection α : 〈m〉 ' 〈n〉/ ∼, giving an enumeration E1, E2, . . . , Em of the equivalence

classes of 〈n〉 (there are m! such enumerations). Then giving a permutation π of 〈n〉 fixing ∼ is equivalent
to supplying the following data:

(i) A permutation σ of {1, . . . ,m}.

(ii) For each i ∈ {1, . . . ,m}, a bijection ui : Ei → Eσ(i).

In this case π fixes a triple (∼, η, ρ) ∈ (S ◦T )[〈n〉] if and only if σ(η) = η and T [ui](ρi) = ρσ(i) for 1 ≤ i ≤ m.
Let’s now regard σ as fixed and decompose the set 〈m〉 into cycles C1, C2, . . . , Cb under σ. Choose a
representative ij from each cycle Cj , and let Cj have length lj . Let τj : Eij → Eij be the composition of the
maps

Eij
uij→ Eσ(ij)

uσ(ij)→ · · · → Eσlj (ij)
= Eij .

If ρ is fixed by π, then ρij determines ρσp(ij) for each p ≥ 0, and ρij is fixed by τj . We may therefore write
ZS◦T,m as a sum

1

m!

∑
n≥0,∼,α

∑
σ∈Σm

|S[〈m〉]σ|
n!

∑
ui∈Bij(Ei,Eσ(i))

(
∏

1≤j≤b

|T [Eij |τj |)Zπ.

Note that each cycle of π corresponds to a cycle of one of the permutations τj , but has lj times the length.
Also note that, provided that Ei and Eσ(i) have the same cardinality ej for each i ∈ Cj , each of sets
Bij(Ei, Eσ(i)) has size ej !. We can therefore write this sum as

1

m!

∑
n≥0,∼,α

|S[〈m〉]σ|
n!

(
∏

1≤j≤b

∑
τj∈Σej

(ej !)
l(j)−1|T [〈ej〉|τj |)Z(lj)

τj .

Once the sizes ej (and therefore the integer n =
∑
ljej) have been fixed, the number of choices for (∼, α) is

given by the multinomial coefficient n!∏
(ej !)

lj
. We may therefore write instead

ZS◦T,m =
1

m!

∑
σ∈Σm

n!|S[〈m〉]σ|
n!(e1!)l1 · · · (eb!)lb

∏
1≤j≤b

∑
τj∈Σej

(ej !)
l(j)−1|T [〈ej〉|τj |)Z(lj)

τj

=
∑
σ∈Σm

|S[〈m〉]σ|
m!

∏
1≤j≤b

∑
τj∈Σej

|T [〈ej〉|τj |)
ej !

Z(lj)
τj

= ZS(Z
(1)
T , Z

(2)
T , . . .).

as desired.

3


