
Math 155 (Lecture 16)

October 10, 2011

We now pick up where we left off in the previous lecture. Let S be the species of finite sets (so that
S[I] = {∗} for every finite set I). We have computed the cycle index of S to be the power series

ZS(s1, s2, · · · ) = es1+s2/2+s3/3+···.

From this formula, we recover the answer to a question raised in a previous lecture:

Question 1. Let G be the symmetric group Σn, acting on the set {1, 2, . . . , n}. What is the cycle index of
G?

Up to isomorphism, the species S of finite sets has one structure of each cardinality n, with symmetric
group Σn. It follows that

ZS(s1, . . . , ) =
∑
n≥0

ZΣn
(s1, s2, . . .).

We can therefore recover the answer to Question 1 by extracting the degree n part of the answer to Question
??. That is, the cycle index of Σn is just the degree n part of the power series

es1+s2/2+s3/3+s4/4+···

(where we count each variable sk as having degree k).

Remark 2. For any species S, we have

ZS(x, 0, 0, 0, . . .) = FS(x).

Taking S to be the species of finite sets, we recover the formula

FS(x) = ZS(x, 0, 0, . . .) = ex+0+··· = ex.

We also recall that ZS(x, x2, x3, · · · ) can be interpreted as the ordinary generating function whose coef-
ficient of xn is given by the number of isomorphism classes of S-structures having size n. If S is the species
of finite sets, we get

ZS(x, x2, x3, . . .) = ex+x2/2+x3/3+···

= elog( 1
1−x )

=
1

1− x
= 1 + x+ x2 + x3 + · · · .

This reflects the observation that, up to isomorphism, there is exactly one S-structure of each cardinality.

Let’s now consider another example.
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Question 3. Let S denote the species of permutations (so that, for each finite set I, we let S[I] denote the
collection of all permutations of I). What is the cycle index ZS(s1, s2, . . .)?

To address Question 3, we use the formula

ZS(s1, s2, . . .) =
∑
n≥0

1

n!

∑
σ∈Σn

|S[〈n〉]σ|Zσ

where Zσ denote the cycle monomial sk11 s
k2
2 · · · , where ki is the number of i-cycles in σ.

If S is the species of permutations, then S[〈n〉] is the symmetric group Σn of permutations of {1, 2, . . . , n}.
Moreover, we have seen that the action of Σn on S[〈n〉] is via conjugation. Consequently, we can identify
the set S[〈n〉]σ with the group {τ ∈ Σn : τσ = στ} consisting of permutations which commute with σ.

Note that if σ and σ′ are conjugate permutations, then the monomials S[〈n〉]σZσ and S[〈n〉]σ′Zσ′ are the
same. We may therefore write

ZS(s1, s2, . . .) =
∑
n≥0

1

n!

∑
σ∈Σn/ conj

CσDσZσ(s1, s2, . . .)

where the sum is taken over all conjugacy classes of permutations, Cσ denotes the number of permutations
conjugate to σ, and Dσ denotes the number of permutations which commute with σ.

Lemma 4. For every permutation σ ∈ Σn, we have CσDσ = n!.

Proof. Let X ⊆ Σn be the conjugacy class of σ: that is, the set of all permutations which commute with σ.
Then Σn acts transitively on X (via conjugation). It follows that |Σn| = |X| |Stab(σ)|. Here |Stab(σ)| = Dσ,
|X| = Cσ, and |Σn| = n!, so CσDσ = n!.

Taking Lemma 4 into account, we get

ZS(s1, s2, . . .) =
∑
n≥0

1

n!

∑
σ∈Σn/ conj

n!Zσ(s1, s2, . . .) =
∑
n≥0

∼σ∈Σn
Zσ(s1, s2, . . .).

Note that a permutation of {1, . . . , n} is determined up to conjugacy by specifying its number of i-cycles for
each integer i: these are integers ki satisfying n =

∑
iki. We therefore obtain

ZS(s1, s2, . . .) =
∑
n≥0

∑
k1+2k2+···=n

sk11 s
k2
2 · · ·

=
∑

k1,k2,···

∏
i≥1

skii

=
∏
i≥1

∑
k≥0

skii

=
∏
i≥1

1

1− si

=
1

(1− s1)(1− s2)(1− s3) · · ·
.

Remark 5. Let’s run a few reality checks on this calculation. For any species S, we have

FS(x) = ZS(x, 0, 0, . . .).

Taking S to be the species of permutations, we recover the formula

FS(x) =
1

(1− x)(1− 0)(1− 0) · · ·
=

1

1− x
= 1 + x+ x2 + x3 + · · · .
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More concretely, this tells us that S[〈n〉] has size n! for each n.
We also know that for any species S, ZS(x, x2, x3, · · · ) is the ordinary generating function which counts

isomorphism classes of S-structures. In the case where S is the species of permutations, we get

ZS(x, x2, x3, · · · ) =
1

(1− x)(1− x2)(1− x3) · · ·
.

The coefficient of xn in this expression is the number of partitions of the integer n: that is, the number of
ways to write n as a sum of positive integers cα (where the order of the summands does not matter).

Let’s now return to some general remarks.

Proposition 6. Let S and T be molecular species. Then the product S × T is a molecular species.

Proof. Recall that S × T is defined by the formula

(S × T )[I] =
∐

I=I0∪I1

S[I0]× T [I1].

This has a more intuitive formulation in the language of structures: to give an S × T -structure on a set I,
we have must give a decomposition of I into pieces I0 and I1, an S-structure on I0, and a T -structure on I1.
This has an even simpler formulation if we neglect the underlying sets: giving the data of an S×T -structure
is equivalent to the data of an S-structure and a T -structure individually.

If S and T are molecular, then up to isomorphism there is a unique S-structure and a unique T -structure.
Taken together, these give the unique S × T -structure.

Note that the proof of Proposition 6 gives more. Suppose that S is molecular. Then, up to isomorphism,
there is a unique S-structure (X, η), where η ∈ S[X]. We have seen that in this case, S is isomorphic to the
species S(G,X), where G is the automorophism group of (X, η). Similarly, if T is molecular, we can write
T = S(H,Y ), where (Y, η′) is a T -structure and H is its automorphism group. Then the pair (η, η′) determines
an (S×T )-structure on the disjoint union XqY . Any automorphism of this (S×T )-structure must preserve
the decomposition of X q Y into X and Y , and must reduce to automorphisms of (X, η) and (Y, η′). We
deduce that the automorphism group of (X q Y, (η, η′)) is isomorphic to G×H, so that S × T is isomorphic
to the molecular species S(G×H,XqY ). In other words, there is a canonical isomorphism of species

S(G,X) × S(H,Y ) ' S(G×H,XqY ).

Combining this with our cycle index formula

ZG×H(s1, s2, · · · ) = ZG(s1, s2, · · · )ZH(s1, s2, . . .),

we obtain a proof of the following:

Lemma 7. Let S and T be molecular species. Then we have

ZS×T (s1, s2, . . .) = ZS(s1, s2, · · · )ZT (s1, s2, · · · ).

Since every species can be obtained as a (possibly infinite) sum of molecular species, Lemma 7 gives the
following:

Proposition 8. Let S and T be species. Then we have

ZS×T (s1, s2, . . .) = ZS(s1, s2, · · · )ZT (s1, s2, · · · ).

Remark 9. When S and T are molecular species, Proposition 8 specializes to our product formula for
the cycle indices of group actions. We obtain another specialization by making the substitution s1 = x,
s2 = s3 = · · · = 0: in this case, we recover the product formula

FS×T (x) = FS(x)FT (x)

for exponential generating functions of species.
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