Math 155 (Lecture 16)

October 10, 2011

We now pick up where we left off in the previous lecture. Let S be the species of finite sets (so that $S[I]=\{*\}$ for every finite set $I)$. We have computed the cycle index of S to be the power series

$$
Z_{S}\left(s_{1}, s_{2}, \cdots\right)=e^{s_{1}+s_{2} / 2+s_{3} / 3+\cdots}
$$

From this formula, we recover the answer to a question raised in a previous lecture:
Question 1. Let G be the symmetric group Σ_{n}, acting on the set $\{1,2, \ldots, n\}$. What is the cycle index of G ?

Up to isomorphism, the species S of finite sets has one structure of each cardinality n, with symmetric group Σ_{n}. It follows that

$$
Z_{S}\left(s_{1}, \ldots,\right)=\sum_{n \geq 0} Z_{\Sigma_{n}}\left(s_{1}, s_{2}, \ldots\right)
$$

We can therefore recover the answer to Question 1 by extracting the degree n part of the answer to Question ??. That is, the cycle index of Σ_{n} is just the degree n part of the power series

$$
e^{s_{1}+s_{2} / 2+s_{3} / 3+s_{4} / 4+\cdots}
$$

(where we count each variable s_{k} as having degree k).
Remark 2. For any species S, we have

$$
Z_{S}(x, 0,0,0, \ldots)=F_{S}(x)
$$

Taking S to be the species of finite sets, we recover the formula

$$
F_{S}(x)=Z_{S}(x, 0,0, \ldots)=e^{x+0+\cdots}=e^{x}
$$

We also recall that $Z_{S}\left(x, x^{2}, x^{3}, \cdots\right)$ can be interpreted as the ordinary generating function whose coefficient of x^{n} is given by the number of isomorphism classes of S-structures having size n. If S is the species of finite sets, we get

$$
\begin{aligned}
Z_{S}\left(x, x^{2}, x^{3}, \ldots\right) & =e^{x+x^{2} / 2+x^{3} / 3+\cdots} \\
& =e^{\log \left(\frac{1}{1-x}\right)} \\
& =\frac{1}{1-x} \\
& =1+x+x^{2}+x^{3}+\cdots
\end{aligned}
$$

This reflects the observation that, up to isomorphism, there is exactly one S-structure of each cardinality.
Let's now consider another example.

Question 3. Let S denote the species of permutations (so that, for each finite set I, we let $S[I]$ denote the collection of all permutations of I). What is the cycle index $Z_{S}\left(s_{1}, s_{2}, \ldots\right)$?

To address Question 3, we use the formula

$$
Z_{S}\left(s_{1}, s_{2}, \ldots\right)=\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_{n}}\left|S[\langle n\rangle]^{\sigma}\right| Z_{\sigma}
$$

where Z_{σ} denote the cycle monomial $s_{1}^{k_{1}} s_{2}^{k_{2}} \cdots$, where k_{i} is the number of i-cycles in σ.
If S is the species of permutations, then $S[\langle n\rangle]$ is the symmetric group Σ_{n} of permutations of $\{1,2, \ldots, n\}$. Moreover, we have seen that the action of Σ_{n} on $S[\langle n\rangle]$ is via conjugation. Consequently, we can identify the set $S[\langle n\rangle]^{\sigma}$ with the group $\left\{\tau \in \Sigma_{n}: \tau \sigma=\sigma \tau\right\}$ consisting of permutations which commute with σ.

Note that if σ and σ^{\prime} are conjugate permutations, then the monomials $S[\langle n\rangle]^{\sigma} Z_{\sigma}$ and $S[\langle n\rangle]^{\sigma^{\prime}} Z_{\sigma^{\prime}}$ are the same. We may therefore write

$$
Z_{S}\left(s_{1}, s_{2}, \ldots\right)=\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_{n} / \operatorname{conj}} C_{\sigma} D_{\sigma} Z_{\sigma}\left(s_{1}, s_{2}, \ldots\right)
$$

where the sum is taken over all conjugacy classes of permutations, C_{σ} denotes the number of permutations conjugate to σ, and D_{σ} denotes the number of permutations which commute with σ.

Lemma 4. For every permutation $\sigma \in \Sigma_{n}$, we have $C_{\sigma} D_{\sigma}=n$!.
Proof. Let $X \subseteq \Sigma_{n}$ be the conjugacy class of σ : that is, the set of all permutations which commute with σ. Then Σ_{n} acts transitively on X (via conjugation). It follows that $\left|\Sigma_{n}\right|=|X||\operatorname{Stab}(\sigma)|$. Here $|\operatorname{Stab}(\sigma)|=D_{\sigma}$, $|X|=C_{\sigma}$, and $\left|\Sigma_{n}\right|=n!$, so $C_{\sigma} D_{\sigma}=n!$.

Taking Lemma 4 into account, we get

$$
Z_{S}\left(s_{1}, s_{2}, \ldots\right)=\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_{n} / \mathrm{conj}} n!Z_{\sigma}\left(s_{1}, s_{2}, \ldots\right)=\sum_{n \geq 0} \sim_{\sigma \in \Sigma_{n}} Z_{\sigma}\left(s_{1}, s_{2}, \ldots\right)
$$

Note that a permutation of $\{1, \ldots, n\}$ is determined up to conjugacy by specifying its number of i-cycles for each integer i : these are integers k_{i} satisfying $n=\sum i k_{i}$. We therefore obtain

$$
\begin{aligned}
Z_{S}\left(s_{1}, s_{2}, \ldots\right) & =\sum_{n \geq 0} \sum_{k_{1}+2 k_{2}+\cdots=n} s_{1}^{k_{1}} s_{2}^{k_{2}} \cdots \\
& =\sum_{k_{1}, k_{2}, \cdots} \prod_{i \geq 1} s_{i}^{k_{i}} \\
& =\prod_{i \geq 1} \sum_{k \geq 0} s_{i}^{k_{i}} \\
& =\prod_{i \geq 1} \frac{1}{1-s_{i}} \\
& =\frac{1}{\left(1-s_{1}\right)\left(1-s_{2}\right)\left(1-s_{3}\right) \cdots}
\end{aligned}
$$

Remark 5. Let's run a few reality checks on this calculation. For any species S, we have

$$
F_{S}(x)=Z_{S}(x, 0,0, \ldots)
$$

Taking S to be the species of permutations, we recover the formula

$$
F_{S}(x)=\frac{1}{(1-x)(1-0)(1-0) \cdots}=\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots
$$

More concretely, this tells us that $S[\langle n\rangle]$ has size n ! for each n.
We also know that for any species $S, Z_{S}\left(x, x^{2}, x^{3}, \cdots\right)$ is the ordinary generating function which counts isomorphism classes of S-structures. In the case where S is the species of permutations, we get

$$
Z_{S}\left(x, x^{2}, x^{3}, \cdots\right)=\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \cdots}
$$

The coefficient of x^{n} in this expression is the number of partitions of the integer n : that is, the number of ways to write n as a sum of positive integers c_{α} (where the order of the summands does not matter).

Let's now return to some general remarks.
Proposition 6. Let S and T be molecular species. Then the product $S \times T$ is a molecular species.
Proof. Recall that $S \times T$ is defined by the formula

$$
(S \times T)[I]=\coprod_{I=I_{0} \cup I_{1}} S\left[I_{0}\right] \times T\left[I_{1}\right] .
$$

This has a more intuitive formulation in the language of structures: to give an $S \times T$-structure on a set I, we have must give a decomposition of I into pieces I_{0} and I_{1}, an S-structure on I_{0}, and a T-structure on I_{1}. This has an even simpler formulation if we neglect the underlying sets: giving the data of an $S \times T$-structure is equivalent to the data of an S-structure and a T-structure individually.

If S and T are molecular, then up to isomorphism there is a unique S-structure and a unique T-structure. Taken together, these give the unique $S \times T$-structure.

Note that the proof of Proposition 6 gives more. Suppose that S is molecular. Then, up to isomorphism, there is a unique S-structure (X, η), where $\eta \in S[X]$. We have seen that in this case, S is isomorphic to the species $S_{(G, X)}$, where G is the automorophism group of (X, η). Similarly, if T is molecular, we can write $T=S_{(H, Y)}$, where $\left(Y, \eta^{\prime}\right)$ is a T-structure and H is its automorphism group. Then the pair $\left(\eta, \eta^{\prime}\right)$ determines an $(S \times T)$-structure on the disjoint union $X \amalg Y$. Any automorphism of this $(S \times T)$-structure must preserve the decomposition of $X \amalg Y$ into X and Y, and must reduce to automorphisms of (X, η) and $\left(Y, \eta^{\prime}\right)$. We deduce that the automorphism group of $\left(X \amalg Y,\left(\eta, \eta^{\prime}\right)\right)$ is isomorphic to $G \times H$, so that $S \times T$ is isomorphic to the molecular species $S_{(G \times H, X \amalg Y)}$. In other words, there is a canonical isomorphism of species

$$
S_{(G, X)} \times S_{(H, Y)} \simeq S_{(G \times H, X \amalg Y)}
$$

Combining this with our cycle index formula

$$
Z_{G \times H}\left(s_{1}, s_{2}, \cdots\right)=Z_{G}\left(s_{1}, s_{2}, \cdots\right) Z_{H}\left(s_{1}, s_{2}, \ldots\right),
$$

we obtain a proof of the following:
Lemma 7. Let S and T be molecular species. Then we have

$$
Z_{S \times T}\left(s_{1}, s_{2}, \ldots\right)=Z_{S}\left(s_{1}, s_{2}, \cdots\right) Z_{T}\left(s_{1}, s_{2}, \cdots\right)
$$

Since every species can be obtained as a (possibly infinite) sum of molecular species, Lemma 7 gives the following:
Proposition 8. Let S and T be species. Then we have

$$
Z_{S \times T}\left(s_{1}, s_{2}, \ldots\right)=Z_{S}\left(s_{1}, s_{2}, \cdots\right) Z_{T}\left(s_{1}, s_{2}, \cdots\right)
$$

Remark 9. When S and T are molecular species, Proposition 8 specializes to our product formula for the cycle indices of group actions. We obtain another specialization by making the substitution $s_{1}=x$, $s_{2}=s_{3}=\cdots=0$: in this case, we recover the product formula

$$
F_{S \times T}(x)=F_{S}(x) F_{T}(x)
$$

for exponential generating functions of species.

