Math 155 (Lecture 15)

October 10, 2011

Recall that species S is said to be molecular if there is exactly one S-structure, up to isomorphism. Equivalently, S is molecular if there exists an integer n such that $S[\langle m\rangle]$ is empty for $m \neq n$, and $S[\langle n\rangle]$ is acted on transitively by the symmetric group Σ_{n}. Every species S can be decomposed uniquely as a sum $\sum_{\alpha} S_{\alpha}$ of molecular species. Furthermore, there is a one to one correspondence between (isomorphism classes of) molecular species and (isomorphism classes of) pairs (G, X), where G is a finite group acting faithfully on a finite set X. This correspondence assigns to a pair (G, X) the species $S_{(G, X)}$, where $S_{(G, X)}[I]=\operatorname{Bij}(X, I) / G$.

If S is any species, the cycle index of S is given by

$$
Z_{S}\left(s_{1}, s_{2}, \ldots\right)=\sum_{(I, \eta)} Z_{\operatorname{Aut}(I, \eta)}\left(s_{1}, \ldots,\right)
$$

where the sum is over all isomorphism classes of S-structures (I, η). If G is a finite group acting faithfully on a set X and $S=S_{(G, X)}$ is the corresponding molecular species, then there is only one isomorphism class of S-structures, and its automorphism group is given by G. We therefore have

$$
Z_{S}\left(s_{1}, s_{2}, \ldots\right)=Z_{G}\left(s_{1}, s_{2}, \ldots\right):
$$

in other words, we can regard the cycle index of a group G as a special case of the cycle index of a species.
Remark 1. Let G be a finite group acting on a set X. The definition of the cycle index $Z_{G}\left(s_{1}, s_{2}, \ldots\right)$ does not require that the action of G on X is faithful. However, there is no harm in assuming that. Suppose that we are given an arbitrary action of a finite group G on a finite set X, given by a map $\rho: G \rightarrow \operatorname{Perm}(X)$. Let $N=\operatorname{ker}(\rho)$ be the kernel of ρ : that is, the subgroup of G consisting of elements which fix every $x \in X$. Then N is a normal subgroup of G, and the quotient group G / N acts on X. Moreover, we have

$$
Z_{G}\left(s_{1}, \ldots,\right)=Z_{G / N}\left(s_{1}, \ldots,\right)
$$

Here is a more direct description of the cycle index of a species:
Proposition 2. Let S be a species. Then the cycle index of S is given by

$$
Z_{S}\left(s_{1}, s_{2}, \ldots\right)=\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_{n}}\left|S[\langle n\rangle]^{\sigma}\right| s_{1}^{k_{1}} s_{2}^{k_{2}} \cdots
$$

where k_{m} denotes the number of m-cycles in the permutation σ.
Proof. We can rewrite the right hand side as

$$
\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_{n}} \sum_{\eta \in S[\langle n\rangle]} \begin{cases}s_{1}^{k_{1}} s_{2}^{k_{2}} \cdots & \text { if } S[\sigma](\eta)=\eta \\ 0 & \text { otherwise }\end{cases}
$$

Rearranging the order of summation, this is given by

$$
\sum_{n \geq 0} \sum_{\eta \in S[\langle n\rangle]} \frac{1}{n!} \sum_{\sigma \in G} Z_{\sigma}
$$

where $G=\operatorname{Stab}(\eta)$ denote the stabilizer of the point η and Z_{σ} is the cycle monomial of σ (regarded as a permutation of the set $\{1,2, \ldots, n\})$. We can rewrite this as

$$
\sum_{n \geq 0} \sum_{\eta \in S[\langle n\rangle]} \frac{|G|}{n!} Z_{G}\left(s_{1}, \ldots\right)
$$

Note that the contribution coming from a particular element of $S[\langle n\rangle]$ is the same for all other η^{\prime} belonging to the Σ_{n} orbit of η. The number of elements in this orbit is given by $\frac{n!}{|G|}$. We may therefore write our sum as

$$
\sum_{n \geq 0} \sum_{S[\langle n\rangle] / \Sigma_{n}} Z_{G}\left(s_{1}, \ldots\right)
$$

which reproduces the definition of Z_{S}.
Example 3. Let S be any species, and consider the power series

$$
Z_{S}(x, 0,0, \ldots)
$$

Writing

$$
Z_{S}=\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_{n}}\left|S[\langle n\rangle]^{\sigma}\right| s_{1}^{k_{1}} s_{2}^{k_{2}} \cdots
$$

we note that the contribution from any non-identity permutation vanishes. We therefore obtain

$$
Z_{S}(x, 0,0, \ldots)=\sum_{n \geq 0} \frac{|S[\langle n\rangle]|}{n!} x^{n}
$$

thereby recovering the exponential generating function of S.
Example 4. Let S be any species, and consider the power series $Z_{S}\left(x, x^{2}, x^{3}, \ldots\right)$. This is given by

$$
Z_{S}\left(x, x^{2}, \ldots\right)=\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_{n}}\left|S[\langle n\rangle]^{\sigma}\right| x^{n}
$$

Applying Burnside's formula, we see that this is given by

$$
\sum_{n \geq 0}\left|S[\langle n\rangle] / \Sigma_{n}\right| x^{n}
$$

This is the ordinary generating function for the unlabelled enumeration problem of counting S-structures, up to isomorphism (this formula also follows immediately from Definition ??).

Let's now compute an example.
Question 5. Let S be the species of sets with no structure: that is, $S[I]=\{*\}$ for every finite set I. What is the cycle index of S ?

According to Proposition 2, the answer is given by

$$
\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_{n}} s_{1}^{k_{1}} s_{2}^{k_{2}} \cdots
$$

where k_{i} denotes the number of i-cycles of σ. We can rewrite this as

$$
\sum_{n \geq 0} \frac{1}{n!} \sum_{k_{1}+2 k_{2}+\cdots=n} C_{\vec{k}} s_{1}^{k_{1}} s_{2}^{k_{2}} \cdots
$$

where $C_{\vec{k}}$ denotes the number of permutations having exactly $k_{i} i$-cycles. Let's first determine the numbers $C_{\vec{k}}$.

Fix a decomposition $n=k_{1}+2 k_{2}+3 k_{3}+\cdots$. Suppose σ is a permutation with $k_{1} 1$-cycles, $k_{2} 2$-cycles, and so forth. How many possibilities are therefore σ ? First, let's count the number of ways to partition σ into labelled subsets, k_{1} of which have size $1, k_{2}$ of which have size 2 , and so forth. This is given by the multinomial coefficient

$$
\frac{n!}{(1!)^{k_{1}}(2!)^{k_{2}}(3!)^{k_{3}} \cdots}
$$

Our counting problem has a slightly different answer. The cycles of σ are not labelled, so we must divide by the product $k_{1}!k_{2}!\cdots$. Also, a permutation is not determined by the decomposition of $\{1,2, \ldots, n\}$ into orbits: we must also specify a cyclic permutation of each orbit. Consequently, we should multiply by $(0!)^{k_{1}}(1!)^{k^{2}}(2!)^{k_{3}} \cdots$ We therefore obtain

$$
\begin{aligned}
C_{\vec{k}} & =\frac{n!}{k_{1}!k_{2}!\cdots} \frac{(0!)^{k_{1}}(1!)^{k_{2}}(2!)^{k_{3}} \cdots}{(1!)^{k_{1}}(2!)^{k_{2}}(3!)^{k_{3}} \cdots} \\
& =\frac{n!}{\left(k_{1}!k_{2}!\cdots\right)\left(1^{k_{1}} 2^{k_{2}} \cdots\right)}
\end{aligned}
$$

Plugging this in, we get

$$
\begin{aligned}
Z_{S} & =\sum_{n \geq 0} \frac{1}{n!} \sum_{n=k_{1}+2 k_{2}+3 k_{3}+\cdots} \frac{n!}{\left(k_{1}!k_{2}!\cdots\right)\left(1^{k_{1}} 2^{k_{2}} \cdots\right)} s_{1}^{k_{1}} s_{2}^{k_{2}} \\
& =\sum_{k_{1}, k_{2}, k_{3}, \ldots} \prod_{i \geq 1} \frac{s_{i}^{k_{i}}}{k_{i}!i^{k_{i}}} \\
& =\prod_{i \geq 1} \sum_{k \geq 0} \frac{1}{k!}\left(\frac{s_{i}}{i}\right)^{k} \\
& =\prod_{i \geq 1} e^{s_{i} / i} \\
& =e^{s_{1}+s_{2} / 2+s_{3} / 3+\cdots}
\end{aligned}
$$

