
Math 155 (Lecture 15)

October 10, 2011

Recall that species S is said to be molecular if there is exactly one S-structure, up to isomorphism.
Equivalently, S is molecular if there exists an integer n such that S[〈m〉] is empty for m 6= n, and S[〈n〉] is
acted on transitively by the symmetric group Σn. Every species S can be decomposed uniquely as a sum∑
α Sα of molecular species. Furthermore, there is a one to one correspondence between (isomorphism classes

of) molecular species and (isomorphism classes of) pairs (G,X), whereG is a finite group acting faithfully on a
finite set X. This correspondence assigns to a pair (G,X) the species S(G,X), where S(G,X)[I] = Bij(X, I)/G.

If S is any species, the cycle index of S is given by

ZS(s1, s2, . . .) =
∑
(I,η)

ZAut(I,η)(s1, . . . , )

where the sum is over all isomorphism classes of S-structures (I, η). If G is a finite group acting faithfully
on a set X and S = S(G,X) is the corresponding molecular species, then there is only one isomorphism class
of S-structures, and its automorphism group is given by G. We therefore have

ZS(s1, s2, . . .) = ZG(s1, s2, . . .) :

in other words, we can regard the cycle index of a group G as a special case of the cycle index of a species.

Remark 1. Let G be a finite group acting on a set X. The definition of the cycle index ZG(s1, s2, . . .) does
not require that the action of G on X is faithful. However, there is no harm in assuming that. Suppose that
we are given an arbitrary action of a finite group G on a finite set X, given by a map ρ : G → Perm(X).
Let N = ker(ρ) be the kernel of ρ: that is, the subgroup of G consisting of elements which fix every x ∈ X.
Then N is a normal subgroup of G, and the quotient group G/N acts on X. Moreover, we have

ZG(s1, . . . , ) = ZG/N (s1, . . . , ).

Here is a more direct description of the cycle index of a species:

Proposition 2. Let S be a species. Then the cycle index of S is given by

ZS(s1, s2, . . .) =
∑
n≥0

1

n!

∑
σ∈Σn

|S[〈n〉]σ|sk11 s
k2
2 · · · ,

where km denotes the number of m-cycles in the permutation σ.

Proof. We can rewrite the right hand side as

∑
n≥0

1

n!

∑
σ∈Σn

∑
η∈S[〈n〉]

{
sk11 s

k2
2 · · · if S[σ](η) = η

0 otherwise.
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Rearranging the order of summation, this is given by∑
n≥0

∑
η∈S[〈n〉]

1

n!

∑
σ∈G

Zσ,

where G = Stab(η) denote the stabilizer of the point η and Zσ is the cycle monomial of σ (regarded as a
permutation of the set {1, 2, . . . , n}). We can rewrite this as∑

n≥0

∑
η∈S[〈n〉]

|G|
n!
ZG(s1, . . .).

Note that the contribution coming from a particular element of S[〈n〉] is the same for all other η′ belonging
to the Σn orbit of η. The number of elements in this orbit is given by n!

|G| . We may therefore write our sum
as ∑

n≥0

∑
S[〈n〉]/Σn

ZG(s1, . . .),

which reproduces the definition of ZS .

Example 3. Let S be any species, and consider the power series

ZS(x, 0, 0, . . .).

Writing

ZS =
∑
n≥0

1

n!

∑
σ∈Σn

|S[〈n〉]σ|sk11 s
k2
2 · · · ,

we note that the contribution from any non-identity permutation vanishes. We therefore obtain

ZS(x, 0, 0, . . .) =
∑
n≥0

|S[〈n〉]|
n!

xn,

thereby recovering the exponential generating function of S.

Example 4. Let S be any species, and consider the power series ZS(x, x2, x3, . . .). This is given by

ZS(x, x2, . . .) =
∑
n≥0

1

n!

∑
σ∈Σn

|S[〈n〉]σ|xn.

Applying Burnside’s formula, we see that this is given by∑
n≥0

|S[〈n〉]/Σn|xn.

This is the ordinary generating function for the unlabelled enumeration problem of counting S-structures,
up to isomorphism (this formula also follows immediately from Definition ??).

Let’s now compute an example.

Question 5. Let S be the species of sets with no structure: that is, S[I] = {∗} for every finite set I. What
is the cycle index of S?
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According to Proposition 2, the answer is given by∑
n≥0

1

n!

∑
σ∈Σn

sk11 s
k2
2 · · ·

where ki denotes the number of i-cycles of σ. We can rewrite this as∑
n≥0

1

n!

∑
k1+2k2+···=n

C~ks
k1
1 s

k2
2 · · · ,

where C~k denotes the number of permutations having exactly ki i-cycles. Let’s first determine the numbers
C~k.

Fix a decomposition n = k1 + 2k2 + 3k3 + · · · . Suppose σ is a permutation with k1 1-cycles, k2 2-cycles,
and so forth. How many possibilities are therefore σ? First, let’s count the number of ways to partition σ
into labelled subsets, k1 of which have size 1, k2 of which have size 2, and so forth. This is given by the
multinomial coefficient

n!

(1!)k1(2!)k2(3!)k3 · · ·
.

Our counting problem has a slightly different answer. The cycles of σ are not labelled, so we must divide
by the product k1!k2! · · · . Also, a permutation is not determined by the decomposition of {1, 2, . . . , n}
into orbits: we must also specify a cyclic permutation of each orbit. Consequently, we should multiply by
(0!)k1(1!)k

2

(2!)k3 · · · We therefore obtain

C~k =
n!

k1!k2! · · ·
(0!)k1(1!)k2(2!)k3 · · ·
(1!)k1(2!)k2(3!)k3 · · ·

=
n!

(k1!k2! · · · )(1k12k2 · · · )
.

Plugging this in, we get

ZS =
∑
n≥0

1

n!

∑
n=k1+2k2+3k3+···

n!

(k1!k2! · · · )(1k12k2 · · · )
sk11 s

k2
2

=
∑

k1,k2,k3,...

∏
i≥1

skii
ki!iki

=
∏
i≥1

∑
k≥0

1

k!
(
si
i

)k

=
∏
i≥1

esi/i

= es1+s2/2+s3/3+···
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