Math 155 (Lecture 15)

October 10, 2011

Recall that species S is said to be *molecular* if there is exactly one S-structure, up to isomorphism. Equivalently, S is molecular if there exists an integer n such that $S[\langle m \rangle]$ is empty for $m \neq n$, and $S[\langle n \rangle]$ is acted on transitively by the symmetric group Σ_n . Every species S can be decomposed uniquely as a sum $\sum_{\alpha} S_{\alpha}$ of molecular species. Furthermore, there is a one to one correspondence between (isomorphism classes of) molecular species and (isomorphism classes of) pairs (G, X), where G is a finite group acting faithfully on a finite set X. This correspondence assigns to a pair (G, X) the species $S_{(G,X)}$, where $S_{(G,X)}[I] = \text{Bij}(X, I)/G$. If S is any species, the code index of S is given by

If S is any species, the *cycle index* of S is given by

$$Z_S(s_1, s_2, \ldots) = \sum_{(I,\eta)} Z_{\operatorname{Aut}(I,\eta)}(s_1, \ldots,)$$

where the sum is over all isomorphism classes of S-structures (I, η) . If G is a finite group acting faithfully on a set X and $S = S_{(G,X)}$ is the corresponding molecular species, then there is only one isomorphism class of S-structures, and its automorphism group is given by G. We therefore have

$$Z_S(s_1, s_2, \ldots) = Z_G(s_1, s_2, \ldots):$$

in other words, we can regard the cycle index of a group G as a special case of the cycle index of a species.

Remark 1. Let G be a finite group acting on a set X. The definition of the cycle index $Z_G(s_1, s_2, ...)$ does not require that the action of G on X is faithful. However, there is no harm in assuming that. Suppose that we are given an arbitrary action of a finite group G on a finite set X, given by a map $\rho : G \to \text{Perm}(X)$. Let $N = \text{ker}(\rho)$ be the kernel of ρ : that is, the subgroup of G consisting of elements which fix every $x \in X$. Then N is a normal subgroup of G, and the quotient group G/N acts on X. Moreover, we have

$$Z_G(s_1,\ldots,)=Z_{G/N}(s_1,\ldots,).$$

Here is a more direct description of the cycle index of a species:

Proposition 2. Let S be a species. Then the cycle index of S is given by

$$Z_S(s_1, s_2, \ldots) = \sum_{n \ge 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_n} |S[\langle n \rangle]^{\sigma} | s_1^{k_1} s_2^{k_2} \cdots,$$

where k_m denotes the number of m-cycles in the permutation σ .

Proof. We can rewrite the right hand side as

$$\sum_{n \ge 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_n} \sum_{\eta \in S[\langle n \rangle]} \begin{cases} s_1^{k_1} s_2^{k_2} \cdots & \text{if } S[\sigma](\eta) = \eta \\ 0 & \text{otherwise.} \end{cases}$$

Rearranging the order of summation, this is given by

$$\sum_{n\geq 0}\sum_{\eta\in S[\langle n\rangle]}\frac{1}{n!}\sum_{\sigma\in G}Z_{\sigma},$$

where $G = \text{Stab}(\eta)$ denote the stabilizer of the point η and Z_{σ} is the cycle monomial of σ (regarded as a permutation of the set $\{1, 2, \ldots, n\}$). We can rewrite this as

$$\sum_{n\geq 0}\sum_{\eta\in S[\langle n\rangle]}\frac{|G|}{n!}Z_G(s_1,\ldots).$$

Note that the contribution coming from a particular element of $S[\langle n \rangle]$ is the same for all other η' belonging to the Σ_n orbit of η . The number of elements in this orbit is given by $\frac{n!}{|G|}$. We may therefore write our sum as

$$\sum_{n\geq 0}\sum_{S[\langle n\rangle]/\Sigma_n}Z_G(s_1,\ldots),$$

which reproduces the definition of Z_S .

Example 3. Let S be any species, and consider the power series

$$Z_S(x, 0, 0, \ldots).$$

Writing

$$Z_S = \sum_{n \ge 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_n} |S[\langle n \rangle]^{\sigma} | s_1^{k_1} s_2^{k_2} \cdots,$$

we note that the contribution from any non-identity permutation vanishes. We therefore obtain

$$Z_S(x,0,0,\ldots) = \sum_{n\geq 0} \frac{|S[\langle n \rangle]|}{n!} x^n,$$

thereby recovering the exponential generating function of S.

Example 4. Let S be any species, and consider the power series $Z_S(x, x^2, x^3, ...)$. This is given by

$$Z_S(x, x^2, \ldots) = \sum_{n \ge 0} \frac{1}{n!} \sum_{\sigma \in \Sigma_n} |S[\langle n \rangle]^{\sigma} | x^n.$$

Applying Burnside's formula, we see that this is given by

$$\sum_{n\geq 0} |S[\langle n\rangle]/\Sigma_n| x^n$$

This is the ordinary generating function for the unlabelled enumeration problem of counting S-structures, up to isomorphism (this formula also follows immediately from Definition ??).

Let's now compute an example.

Question 5. Let S be the species of sets with no structure: that is, $S[I] = \{*\}$ for every finite set I. What is the cycle index of S?

According to Proposition 2, the answer is given by

$$\sum_{n\geq 0} \frac{1}{n!} \sum_{\sigma\in\Sigma_n} s_1^{k_1} s_2^{k_2} \cdots$$

where k_i denotes the number of *i*-cycles of σ . We can rewrite this as

$$\sum_{n\geq 0} \frac{1}{n!} \sum_{k_1+2k_2+\dots=n} C_{\vec{k}} s_1^{k_1} s_2^{k_2} \cdots,$$

where $C_{\vec{k}}$ denotes the number of permutations having exactly k_i *i*-cycles. Let's first determine the numbers $C_{\vec{k}}$.

Fix a decomposition $n = k_1 + 2k_2 + 3k_3 + \cdots$. Suppose σ is a permutation with k_1 1-cycles, k_2 2-cycles, and so forth. How many possibilities are therefore σ ? First, let's count the number of ways to partition σ into labelled subsets, k_1 of which have size 1, k_2 of which have size 2, and so forth. This is given by the multinomial coefficient

$$\frac{n!}{(1!)^{k_1}(2!)^{k_2}(3!)^{k_3}\cdots}.$$

Our counting problem has a slightly different answer. The cycles of σ are not labelled, so we must divide by the product $k_1!k_2!\cdots$. Also, a permutation is not determined by the decomposition of $\{1, 2, \ldots, n\}$ into orbits: we must also specify a cyclic permutation of each orbit. Consequently, we should multiply by $(0!)^{k_1}(1!)^{k_2}(2!)^{k_3}\cdots$ We therefore obtain

$$C_{\vec{k}} = \frac{n!}{k_1!k_2!\cdots} \frac{(0!)^{k_1}(1!)^{k_2}(2!)^{k_3}\cdots}{(1!)^{k_1}(2!)^{k_2}(3!)^{k_3}\cdots}$$
$$= \frac{n!}{(k_1!k_2!\cdots)(1^{k_1}2^{k_2}\cdots)}.$$

Plugging this in, we get

$$Z_{S} = \sum_{n \ge 0} \frac{1}{n!} \sum_{n=k_{1}+2k_{2}+3k_{3}+\dots} \frac{n!}{(k_{1}!k_{2}!\dots)(1^{k_{1}}2^{k_{2}}\dots)} s_{1}^{k_{1}} s_{2}^{k_{2}}$$

$$= \sum_{k_{1},k_{2},k_{3},\dots} \prod_{i\ge 1} \frac{s_{i}^{k_{i}}}{k_{i}!l^{k_{i}}}$$

$$= \prod_{i\ge 1} \sum_{k\ge 0} \frac{1}{k!} (\frac{s_{i}}{i})^{k}$$

$$= \prod_{i\ge 1} e^{s_{i}/i}$$

$$= e^{s_{1}+s_{2}/2+s_{3}/3+\dots}$$