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In the last few lectures, we have discussed the cycle index of a finite group G acting on a set X. The
cycle index contains a lot of enumerative information in a conveniently accessible form. However, it is not
always easy to compute, even in relatively simple cases.

Question 1. Let G be the group of permutations of the set X = {1, 2, . . . , n}, and regard G as acting on
X. What is the cycle index ZG(s1, . . .)?

We will return to Question 1 in the next lecture. First, we need to make a large digression back to the
theory of species.

Let S be a species. By our definition, S is a rule which assigns to each finite set I another finite set
S[I], and to each bijection π : I → J another bijection S[π] : S[I]→ S[J ]. However, there is another way of
thinking about a species.

Definition 2. Let S be a species. An S-structure is a finite set I and an element η ∈ S[I]. Given two
S-structures (I, η) and (I ′, η′), an isomorphism between (I, η) and (I ′, η′) is a bijection π : I → I ′ such that
S[π](η) = η′.

Example 3. Let S be the species of linearly ordered sets. Then an S-structure is just a finite set equipped
with a linear ordering (and an isomorphism of S-structures is just an order-preserving bijection).

Example 4. Let S be the species of graphs. Then an S-structure is just a graph with finitely many vertices.

By definition, every S-structure has an underlying finite set. Conversely, from the theory of S-structures
(and knowledge of the underlying finite set) we can recover the species S: S[I] is just the collection of all
S-structures on I. We can summarize the situation by saying that a species is just a type of structure that
can live on a finite set (this idea can be formalized with a little bit of category theory, but we will not need
this).

Now suppose that S is a species and that (I, η) is an S-structure. The collection of all isomorphisms
of (I, η) with itself forms a group: namely, it is the group of all permutations π : I → I which satisfy
S[π](η) = η. We will refer to this group as the automorphism group of (I, η), and denote it by Aut(I, η).
Note that the group Perm(I) of all permutations of I acts on the set S[I]; the group Aut(I, η) is just the
stabilizer of the element η ∈ S[I].

Definition 5. Let S be a species. The cycle index of S is the formal power series

ZS(s1, s2, . . .) =
∑
(I,η)

ZAut(I,η)(s1, s2, . . .).

Here the sum is taken over all isomorphism classes of S-structures, and each summand is the cycle index of
the group Aut(I, η) acting on the set I.

Example 6. Let S be the species of linearly ordered sets, so that an S-structure is just a finite linearly
ordered set. Up to isomorphism, there is exactly one S-structure of size n, for each n ≥ 0. Moreover, the
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automorphism group of every S-structure is trivial. The cycle index of the trivial group acting on a set of
size n is just sn1 . It follows that the cycle index ZS(s1, s2, . . .) is given by∑

n≥0

sn1 =
1

1− s1
.

We have defined the cycle index of a species in terms of the cycle index of a group action. In fact, the
relationship between the two is quite close: the cycle index of a group action can be viewed as a special case
of the cycle index of a species.

Construction 7. Let G be a finite group acting on a finite set X. Assume that the action of G is faithful:
that is, if an element g ∈ G fixes every element of X, then g is the identity (this is equivalent to saying that
the action of G on X is given by an injective map G → Perm(X)). We define a species S(G,X) as follows.
For each finite set I, let Bij(X, I) denote the set of all bijections I → X, and set S(G,X)[I] = Bij(X, I)/G be
the quotient of Bij(X, I) by the action of G. Then S(G,X) is a species. Up to isomorphism, there is only one
S(G,X)-structure: it is given by the identity map id : X → X.

Suppose that S is any species and that there is only one isomorphism class of S-structures. Choose a
representative of this isomorphism class (X, η), with η ∈ S[X]. Let G = Aut(X, η). Then G is a subgroup
of Perm(X), so we can regard G as acting faithfully on the set X. We claim that S is isomorphic to the
species S(G,X). To prove this, let I be any finite set. To every bijection π : X → I we can assign an element
S[π](η) ∈ S[I]. Since η is fixed by the group G, the map π 7→ S[π](η) determines a map

S(G,X)[I] = Bij(X, I)/G→ S[I].

This map is injective: if we are given a pair of bijections π, π′ : X → I such that S[π](η) = S[π′](η),
then π−1π′ is an automorphism of (X, η) and therefore belongs to G. It is also surjective, because of our
assumption that all S-structures are isomorphic. We haven proven:

Proposition 8. Let S be a species. The following conditions are equivalent:

(1) There is exactly one isomorphism class of S-structures.

(2) S is isomorphic to S(G,X), for some finite group G acting faithfully on a finite set X.

A species S is called molecular if it satisfies the conditions of Proposition 8. Note that the group G and
the set X are well-defined up to isomorphism: if we choose an S-structure (I, η), we can identify X with the
underlying set I and G with the automorphism group Aut(I, η). We can summarize the situation as follows:
giving a molecular species is equivalent to giving a finite group G, and an action of G on a finite set X.

Now let S be an arbitrary species. Then we can write S as a (possibly infinite) sum
∑
Sα, where each

Sα is a molecular species. Here there is one summand for each isomorphism class of S-structures (more
concretely, there is one summand for each integer n ≥ 0 and each orbit of the group Σn on the set S(〈n〉)).

We can now explain Definition 5 as follows: if S = S(G,X) is a molecular species, the the cycle index ZS
is just defined to be the cycle index ZG. In general, if we write S as a sum of molecular species Sα, then
ZS =

∑
α ZSα

.
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