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September 30, 2011

In this lecture, we will study some of the formal properties of the cycle index ZG of a finite group G acting
on a set X. Ideally, we would like to have some recipe for computing the cycle index of X in terms of the
structure of X as a G-set. For example, we know that X decomposes uniquely as a disjoint union of orbits
X1∪· · ·∪Xm. Let ZG,i denote the cycle index of G acting on the set Xi. We know that ZG = ZG(s1, s2, . . .)
is a polynomial of degree |X|, where each si is regarded as having degree i. Similarly, each ZG,i has degree
|Xi|. This raises the following possibility:

Question 1. In the situation above, is the cycle index ZG given by the product
∏

1≤i≤m ZG,i?

Let’s test this out in a simple example. Let G be the group Z/pZ. Let X be a disjoint union G
∐

G,
with G acting on each summand by left translation. The identity element of G has 2p fixed points, and every
nontrivial element of G has two orbits of size p. It follows that the cycle index ZG is given by

ZG =
s2p1 + (p− 1)s2p

p
.

On the other hand, we computed the cycle index Z ′G for the group G acting on itself in the last lecture: it
is given by

Z ′G =
sp1 + (p− 1)sp

p
.

It is easy to see that ZG 6= Z ′2G .
There is a formula of the form suggested by Question 1. However, it requires looking at a pair of group

actions, rather than a single group acting on a pair of sets.

Construction 2. Let G and H be finite groups, and let X and Y be finite sets acted on by G and H,
respectively. We let the product group G×H act on the disjoint union X

∐
Y by the formula

(g, h)x = gx (g, h)y = hy.

Proposition 3. In the situation of Construction 2, we have

ZG×H(s1, s2, . . .) = ZG(s1, s2, . . .)ZH(s1, s2, . . .).

Proof. We have

ZGZH =
1

|G|
1

|H|
(
∑
g∈G

Zg)(
∑
h∈H

Zh)

=
1

|G×H|
∑

(g,h)∈G×H

ZgZh.

It therefore suffices to observe that there is an identity of cycle monomials

ZgZh = Z(g,h).
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This arises from the following simple observation: the number of orbits of (g, h) on X
∐

Y having size m is
the sum of the number of orbits of g on X having size m, and the number of orbits of h on Y having size
m.

We now consider a more subtle question. What if we are given a finite group G acting on X, a finite
group H acting on a finite set Y , and we want to study the product X × Y ? Here we have cycle indices ZG

and ZH , which are polynomials of degree |X| and |Y | respectively. To relate these to a polynomial of degree
|X × Y | = |X| |Y |, it is natural to guess that some form of composition is involved.

First, let’s ask what group acts on the set X × Y . Of course, there is a natural action of G ×H, given
by the formula

(g, h)(x, y) = (gx, hy).

Another way of saying this is that there are actions of G and H on X × Y , and these actions commute with
one another. But there are much larger groups that also act on X × Y . For example, let HX denote the
product

∏
x∈X H of several copies of H, indexed by H. We will denote elements of HX by tuples (hx)x∈X .

The group HX acts on X × Y by the formula

(hx)x∈X(x′, y′) = (x′, hx′y
′).

Similarly, the product GY acts on X × Y by the formula

(gy)y∈Y (x′, y′) = (gy′(x
′), y′).

These actions do not commute with each other, and so do not define an action of GY × HX on X × Y .
In general, it may be very difficult to describe what sorts of permutations of X × Y can be obtained by
combining the actions of GY and HX . However, the action of the smaller group G on X×Y almost commutes
with the action of HX . We have

g((hx)x∈X(x′, y′)) = g(x′, hx′y
′) = (gx′, hx′y

′)

(hx)x∈Xg(x′, y′) = (hx)x∈X(gx′, y′) = (gx′, hgx′y
′).

This suggests the possibility that G and HX can be combined into a larger group that acts on X × Y .

Construction 4. Let G be a group acting on a set X and let H be another group. We define a new group
H o G, called the wreath product of G and H. As a set, H o G coincides with the direct product G × HX .
However, the multiplication is slightly twisted: it is given by

(g, (hx)x∈X)(g′, (h′x)x∈X = (gg′, (hg′xh
′
x)x∈X .

Exercise 5. Show that the multiplication above makes H oG into a group (that is, show that it is associative
and that each element has an inverse).

The wreath product H o G contains both G and HX as subgroups. However, these subgroups do not
commute: by construction, we have

g−1(hx)x∈Xg = (hgx)x∈X .

Now suppose that H acts on a set Y . We define an action of H oG on the product X ×Y by the formula

(g, (hx)x∈X)(x′, y′) = (gx′, hx′y
′).

Exercise 6. Show that this gives an action of H oG on the product X × Y .
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Let’s now assume that all of our groups and sets are finite, and try to compute the cycle index ZHoG of
the wreath product (which we regard as acting on the set X × Y ). First, let’s compute the cycle monomials
Z(g,(hx)) associated to an element (g, (hx)) ∈ H oG. Choose a set of representatives x1, . . . , xm for the g-orbits

on X, and let di denote the smallest positive integer such that gdixi = xi. Thus

X = {x1, gx1, . . . , g
d1−1x1} ∪ · · · ∪ {xm, gxm, . . . , gdm−1xm}.

Let’s try to describe the orbits of (g, (hx)) on the product X × Y . Take the (g, (hx)) orbit of an element
(x′, y′) ∈ X × Y . Then x′ belongs to some G-orbit on X. Applying some power of (g, (hx)), we can assume
that x′ = xi for some 1 ≤ i ≤ m. For every exponent k, we have

(g, (hx))k(x′, y′) = (gkx′, hgk−1x · · ·hxy
′).

In particular, if (g, (hx))k(x′, y′) = (x′, y′′), then k must be divisible by di. Write k = diq and ~hi =
hgdi−1x · · ·hx, so that

(g, (hx))k(x′, y′) = (x′,~hq
i y
′).

This analysis proves:

(∗) There is a bijection between orbits of ~hi on Y with orbits of (g, (hx)) on X×Y lying over {xi, · · · , gdi−1xi}.
This bijection carries orbits of size t to orbits of size dit.

From (∗) we deduce the following formula for cycle monomials:

Z(g,(hx))(s1, s2, . . .) =
∏

1≤i≤m

Z~hi
(sdi

, s2di
, s3di

, . . .).

Now let’s try to evaluate the entire cycle index. We have

ZHoG =
1

|G||H||X|
∑

(g,(hx))

Z(g,hx)

=
1

|G||H||X|
∑
g∈G

∑
(hx)∈HX

∏
1≤i≤m

Z~hi
(sdi , . . . , )

where m and ~hi are defined as above. Note that the expression in the product depends only on the elements
~hi. Consequently, each term in the sum over HX is repeated |H||X|−m times. We can rewrite our expression
as

1

|G||H||X|
∑
g∈G

∑
(~hi)∈Hm

|H||X|−m
∏

1≤i≤m

Z~hi
(sdi

, . . .).

Rearranging this, we get
1

|G|
∑
g∈G

∑
(~hi)∈Hm

∏
1≤i≤m Z~hi

(sdi
, . . .)

|H|m
.

Applying the distributive law, we get

1

|G|
∑
g∈G

∏
1≤i≤m

1

|H|
∑
h∈H

Zh(sdi
, s2di

, . . .)

or
1

|G|
∑
g∈G

∏
1≤i≤m

ZH(sdi , s2di , . . .).

This polynomial can obtained from the cycle index for G by the replacement

sd 7→ ZH(sd, s2d, . . .).

We have proven the following:
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Theorem 7. Let G be a finite group acting on a set X, let H be a finite group acting on a set Y , and regard
the wreath product H oG as acting on the set X × Y . Then we have an equality of polynomials

ZHoG(s1, s2, . . .) = ZG(t1, t2, t3, . . .)

where td = ZH(sd, s2d, s3d, . . .).
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