Math 155 (Lecture 13)

September 30, 2011

In this lecture, we will study some of the formal properties of the cycle index Z_{G} of a finite group G acting on a set X. Ideally, we would like to have some recipe for computing the cycle index of X in terms of the structure of X as a G-set. For example, we know that X decomposes uniquely as a disjoint union of orbits $X_{1} \cup \cdots \cup X_{m}$. Let $Z_{G, i}$ denote the cycle index of G acting on the set X_{i}. We know that $Z_{G}=Z_{G}\left(s_{1}, s_{2}, \ldots\right)$ is a polynomial of degree $|X|$, where each s_{i} is regarded as having degree i. Similarly, each $Z_{G, i}$ has degree $\left|X_{i}\right|$. This raises the following possibility:

Question 1. In the situation above, is the cycle index Z_{G} given by the product $\prod_{1 \leq i \leq m} Z_{G, i}$?
Let's test this out in a simple example. Let G be the group $\mathbf{Z} / p \mathbf{Z}$. Let X be a disjoint union $G \coprod G$, with G acting on each summand by left translation. The identity element of G has $2 p$ fixed points, and every nontrivial element of G has two orbits of size p. It follows that the cycle index Z_{G} is given by

$$
Z_{G}=\frac{s_{1}^{2 p}+(p-1) s_{p}^{2}}{p}
$$

On the other hand, we computed the cycle index Z_{G}^{\prime} for the group G acting on itself in the last lecture: it is given by

$$
Z_{G}^{\prime}=\frac{s_{1}^{p}+(p-1) s_{p}}{p}
$$

It is easy to see that $Z_{G} \neq Z_{G}^{\prime 2}$.
There is a formula of the form suggested by Question 1. However, it requires looking at a pair of group actions, rather than a single group acting on a pair of sets.

Construction 2. Let G and H be finite groups, and let X and Y be finite sets acted on by G and H, respectively. We let the product group $G \times H$ act on the disjoint union $X \amalg Y$ by the formula

$$
(g, h) x=g x \quad(g, h) y=h y
$$

Proposition 3. In the situation of Construction 2, we have

$$
Z_{G \times H}\left(s_{1}, s_{2}, \ldots\right)=Z_{G}\left(s_{1}, s_{2}, \ldots\right) Z_{H}\left(s_{1}, s_{2}, \ldots\right) .
$$

Proof. We have

$$
\begin{aligned}
Z_{G} Z_{H} & =\frac{1}{|G|} \frac{1}{|H|}\left(\sum_{g \in G} Z_{g}\right)\left(\sum_{h \in H} Z_{h}\right) \\
& =\frac{1}{|G \times H|} \sum_{(g, h) \in G \times H} Z_{g} Z_{h} .
\end{aligned}
$$

It therefore suffices to observe that there is an identity of cycle monomials

$$
Z_{g} Z_{h}=Z_{(g, h)}
$$

This arises from the following simple observation: the number of orbits of (g, h) on $X \coprod Y$ having size m is the sum of the number of orbits of g on X having size m, and the number of orbits of h on Y having size m.

We now consider a more subtle question. What if we are given a finite group G acting on X, a finite group H acting on a finite set Y, and we want to study the product $X \times Y$? Here we have cycle indices Z_{G} and Z_{H}, which are polynomials of degree $|X|$ and $|Y|$ respectively. To relate these to a polynomial of degree $|X \times Y|=|X||Y|$, it is natural to guess that some form of composition is involved.

First, let's ask what group acts on the set $X \times Y$. Of course, there is a natural action of $G \times H$, given by the formula

$$
(g, h)(x, y)=(g x, h y)
$$

Another way of saying this is that there are actions of G and H on $X \times Y$, and these actions commute with one another. But there are much larger groups that also act on $X \times Y$. For example, let H^{X} denote the product $\prod_{x \in X} H$ of several copies of H, indexed by H. We will denote elements of H^{X} by tuples $\left(h_{x}\right)_{x \in X}$. The group H^{X} acts on $X \times Y$ by the formula

$$
\left(h_{x}\right)_{x \in X}\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime}, h_{x^{\prime}} y^{\prime}\right)
$$

Similarly, the product G^{Y} acts on $X \times Y$ by the formula

$$
\left(g_{y}\right)_{y \in Y}\left(x^{\prime}, y^{\prime}\right)=\left(g_{y^{\prime}}\left(x^{\prime}\right), y^{\prime}\right)
$$

These actions do not commute with each other, and so do not define an action of $G^{Y} \times H^{X}$ on $X \times Y$. In general, it may be very difficult to describe what sorts of permutations of $X \times Y$ can be obtained by combining the actions of G^{Y} and H^{X}. However, the action of the smaller group G on $X \times Y$ almost commutes with the action of H^{X}. We have

$$
\begin{gathered}
g\left(\left(h_{x}\right)_{x \in X}\left(x^{\prime}, y^{\prime}\right)\right)=g\left(x^{\prime}, h_{x^{\prime}} y^{\prime}\right)=\left(g x^{\prime}, h_{x^{\prime}} y^{\prime}\right) \\
\left(h_{x}\right)_{x \in X} g\left(x^{\prime}, y^{\prime}\right)=\left(h_{x}\right)_{x \in X}\left(g x^{\prime}, y^{\prime}\right)=\left(g x^{\prime}, h_{g x^{\prime}} y^{\prime}\right)
\end{gathered}
$$

This suggests the possibility that G and H^{X} can be combined into a larger group that acts on $X \times Y$.
Construction 4. Let G be a group acting on a set X and let H be another group. We define a new group $H \imath G$, called the wreath product of G and H. As a set, $H \imath G$ coincides with the direct product $G \times H^{X}$. However, the multiplication is slightly twisted: it is given by

$$
\left(g,\left(h_{x}\right)_{x \in X}\right)\left(g^{\prime},\left(h_{x}^{\prime}\right)_{x \in X}=\left(g g^{\prime},\left(h_{g^{\prime} x} h_{x}^{\prime}\right)_{x \in X}\right.\right.
$$

Exercise 5. Show that the multiplication above makes H 亿 G into a group (that is, show that it is associative and that each element has an inverse).

The wreath product $H \imath G$ contains both G and H^{X} as subgroups. However, these subgroups do not commute: by construction, we have

$$
g^{-1}\left(h_{x}\right)_{x \in X} g=\left(h_{g x}\right)_{x \in X}
$$

Now suppose that H acts on a set Y. We define an action of $H \imath G$ on the product $X \times Y$ by the formula

$$
\left(g,\left(h_{x}\right)_{x \in X}\right)\left(x^{\prime}, y^{\prime}\right)=\left(g x^{\prime}, h_{x^{\prime}} y^{\prime}\right)
$$

Exercise 6. Show that this gives an action of $H \succ G$ on the product $X \times Y$.

Let's now assume that all of our groups and sets are finite, and try to compute the cycle index $Z_{H \imath G}$ of the wreath product (which we regard as acting on the set $X \times Y$). First, let's compute the cycle monomials $Z_{\left(g,\left(h_{x}\right)\right)}$ associated to an element $\left(g,\left(h_{x}\right)\right) \in H \imath G$. Choose a set of representatives x_{1}, \ldots, x_{m} for the g-orbits on X, and let d_{i} denote the smallest positive integer such that $g^{d_{i}} x_{i}=x_{i}$. Thus

$$
X=\left\{x_{1}, g x_{1}, \ldots, g^{d_{1}-1} x_{1}\right\} \cup \cdots \cup\left\{x_{m}, g x_{m}, \ldots, g^{d_{m}-1} x_{m}\right\} .
$$

Let's try to describe the orbits of $\left(g,\left(h_{x}\right)\right)$ on the product $X \times Y$. Take the $\left(g,\left(h_{x}\right)\right)$ orbit of an element $\left(x^{\prime}, y^{\prime}\right) \in X \times Y$. Then x^{\prime} belongs to some G-orbit on X. Applying some power of $\left(g,\left(h_{x}\right)\right)$, we can assume that $x^{\prime}=x_{i}$ for some $1 \leq i \leq m$. For every exponent k, we have

$$
\left(g,\left(h_{x}\right)\right)^{k}\left(x^{\prime}, y^{\prime}\right)=\left(g^{k} x^{\prime}, h_{g^{k-1} x} \cdots h_{x} y^{\prime}\right)
$$

In particular, if $\left(g,\left(h_{x}\right)\right)^{k}\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime}, y^{\prime \prime}\right)$, then k must be divisible by d_{i}. Write $k=d_{i} q$ and $\vec{h}_{i}=$ $h_{g^{d_{i}-1} x} \cdots h_{x}$, so that

$$
\left(g,\left(h_{x}\right)\right)^{k}\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime}, \vec{h}_{i}^{q} y^{\prime}\right)
$$

This analysis proves:
(*) There is a bijection between orbits of \vec{h}_{i} on Y with orbits of $\left(g,\left(h_{x}\right)\right)$ on $X \times Y$ lying over $\left\{x_{i}, \cdots, g^{d_{i}-1} x_{i}\right\}$. This bijection carries orbits of size t to orbits of size $d_{i} t$.

From $(*)$ we deduce the following formula for cycle monomials:

$$
Z_{\left(g,\left(h_{x}\right)\right)}\left(s_{1}, s_{2}, \ldots\right)=\prod_{1 \leq i \leq m} Z_{\vec{h}_{i}}\left(s_{d_{i}}, s_{2 d_{i}}, s_{3 d_{i}}, \ldots\right)
$$

Now let's try to evaluate the entire cycle index. We have

$$
\begin{aligned}
Z_{H \imath G} & =\frac{1}{|G||H|^{|X|}} \sum_{\left(g,\left(h_{x}\right)\right)} Z_{\left(g, h_{x}\right)} \\
& =\frac{1}{|G||H|^{|X|}} \sum_{g \in G} \sum_{\left(h_{x}\right) \in H^{X}} \prod_{1 \leq i \leq m} Z_{\vec{h}_{i}}\left(s_{d_{i}}, \ldots,\right)
\end{aligned}
$$

where m and \vec{h}_{i} are defined as above. Note that the expression in the product depends only on the elements \vec{h}_{i}. Consequently, each term in the sum over H^{X} is repeated $|H|^{|X|-m}$ times. We can rewrite our expression as

$$
\frac{1}{|G||H|^{|X|}} \sum_{g \in G} \sum_{\left(\vec{h}_{i}\right) \in H^{m}}|H|^{|X|-m} \prod_{1 \leq i \leq m} Z_{\vec{h}_{i}}\left(s_{d_{i}}, \ldots\right) .
$$

Rearranging this, we get

$$
\frac{1}{|G|} \sum_{g \in G} \sum_{\left(\vec{h}_{i}\right) \in H^{m}} \frac{\prod_{1 \leq i \leq m} Z_{\vec{h}_{i}}\left(s_{d_{i}}, \ldots\right)}{|H|^{m}}
$$

Applying the distributive law, we get

$$
\frac{1}{|G|} \sum_{g \in G} \prod_{1 \leq i \leq m} \frac{1}{|H|} \sum_{h \in H} Z_{h}\left(s_{d_{i}}, s_{2 d_{i}}, \ldots\right)
$$

or

$$
\frac{1}{|G|} \sum_{g \in G} \prod_{1 \leq i \leq m} Z_{H}\left(s_{d_{i}}, s_{2 d_{i}}, \ldots\right)
$$

This polynomial can obtained from the cycle index for G by the replacement

$$
s_{d} \mapsto Z_{H}\left(s_{d}, s_{2 d}, \ldots\right)
$$

We have proven the following:

Theorem 7. Let G be a finite group acting on a set X, let H be a finite group acting on a set Y, and regard the wreath product $H \backslash G$ as acting on the set $X \times Y$. Then we have an equality of polynomials

$$
Z_{H \imath G}\left(s_{1}, s_{2}, \ldots\right)=Z_{G}\left(t_{1}, t_{2}, t_{3}, \ldots\right)
$$

where $t_{d}=Z_{H}\left(s_{d}, s_{2 d}, s_{3 d}, \ldots\right)$.

