
Math 155 (Lecture 11)

September 25, 2011

In the last lecture, we explained how to use Polya’s theorem to count the number if isomorphism classes
of graphs of size n. The answer was given by the sum

1

n!

∑
σ∈Σn

2o(σ),

where o(σ) denotes the number of orbits of the permutation σ on the set E of all two-element subsets of the
set {1, 2, . . . , n}. Let’s ask a more refined question:

Question 1. Let n and k be nonnegative integers. Up to isomorphism, how many graphs are there with
exactly n vertices and exactly k edges?

For the moment, let’s regard n as fixed and ask how the answer to this question depends on k. For each
k ≥ 0, let’s denote the number of isomorphism classes of graphs with k edges (and n vertices) by Ck. Of
course,

∑
k≥0 Ck is just the total number of graphs with n vertices, given by the sum

1

n!

∑
σ∈Σn

2o(σ).

Now we’re asking not for a single number but for several. However, we can package the different answers
together in a convenient way. Consider the generating function

F (t) =
∑
k≥0

Ckt
k.

This is just a polynomial in t, with integer coefficients. We have F (1) =
∑
k≥0 Ck = 1

n!

∑
σ∈Σn

2o(σ). Let’s
try to describe the entire polynomial F in a similar way.

We begin by describing Ck in a convenient way. Let Xk denote the collection of all graphs with vertex
set {1, . . . , n} which have exactly k vertices. By definition, Ck is the number of elements of the quotient

|Σn\Xk|. Note that the cardinality of Xk is given by the binomial coefficient
((n2)
k

)
, which is given by the

coefficient of tk in the expression (1+t)(
n
2). We can count the number of elements of Σn\Xk using Burnside’s

formula: it is given by
1

n!

∑
σ∈Σn

|Xσ
k |,

where Xσ
k denotes the number of graphs with vertex set {1, . . . , n} which are have exactly k vertices and are

fixed by the permutation σ. Let E be the collection of all two-element subsets of the set {1, . . . , n}. Then
E decomposes as a union E1 ∪ E2 ∪ · · · ∪ Eo(σ) of orbits under the permutation σ. To give a graph which
is invariant under the permutation σ,we need to give a subset of E which is a union of orbits: there are
2o(σ) such subsets in all. For our more refined question, we want to count only those subsets which have size
exactly k. This is given by the coefficient of tk in the polynomial

(1 + t|E1|)(1 + t|E2|) · · · (1 + t|Eo(σ)|).
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In particular, the contribution depends not only on the number o(σ) of orbits of σ, but also on the sizes of
the different orbits.

We now introduce a convenient device for keeping track of this sort of information.

Definition 2. Let G be a finite group and let X be a finite G-set. Fix an element g ∈ G. For each n ≥ 1,
let cn denote the number of g-orbits of X having size exactly n. We define the cycle monomial Zg to be the
expression

sc11 s
c2
2 s

c3
3 · · ·

This is a monomial in the sequence of formal variables s1, s2, . . .. Note that although we have infinitely many
variables here, only finitely many of them actually appear in our expression (since cn = 0 for all sufficiently
large n).

We define the cycle index of G to be the sum

ZG = ZG(s1, s2, s3, . . .) =
1

|G|
∑
g∈G

Zg.

This is a polynomial in the infinite sequence of variables s1, s2, . . . (though we should again note that only
finitely many of these variables actually appear).

Warning 3. Although we refer to ZG as the cycle index of G, it depends not only on G but also on the
G-set X.

Example 4. Let t be a nonnegative integer. If we evaluate the cycle index ZG(s1, s2, . . .) at the point
s1 = s2 = · · · = t, we obtain the number

ZG(t, t, . . .) =
1

|G|
∑
g∈G

to(g) = |G\TX |

appearing in Polya’s enumeration theorem.

Example 5. Suppose we fix a variable t and evaluate the cycle index on the sequence s1 = t, s2 = t2, s3 =
t3, · · · . We then get

ZG(s1, s2, · · · ) = ZG(t, t2, t3, · · · ) =
1

|G|
∑
g∈G

tc1+2c2+3c3+··· = t|X|.

If we take t to be the number of elements in some set T , this is counting the size of of TX , where symmetry
is not taken into account.

Example 6. Let G = Σn, acting on the set E of two-element subsets of {1, . . . , n}. For a given element
σ ∈ G, we have seen that the number of σ-invariant graphs with vertex set {1, . . . , n} and k edges is given
by the coefficient of tk in the cycle monomial

Zσ(s1, s2, . . .),

evaluated at s1 = 1 + t, s2 = 1 + t2, and so forth. Summing over σ and dividing by n!, we see (using
Burnside’s formula) that the number of isomorphism classes of graphs with n vertices and k edges is given
by the coefficient of tk in the expression

ZG(1 + t, 1 + t2, 1 + t3, . . .).

The moral of the above examples is that the cycle index of a group action contains a lot of useful
enumerative information.
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Theorem 7 (Polya Enumeration Theorem). Let G be a finite group, X a finite G-set, and T = {y1, . . . , yt}
another finite set. Fix a finite set of nonnegative integers ~e = (e1, . . . , et), and let TX~e denote the collection
of all maps f : X → T such that each of the inverse images f−1{yi} has size exactly ei. (If we think of f
as a coloring of the set X using the set of colors {y1, . . . , yt}, then we are requiring that the color yi is used
exactly ei times.)

The cardinality of the set G\TX~e is given by the coefficient of Y e11 · · ·Y
et
t in the polynomial

ZG(Y1 + · · ·+ Yt, Y
2
1 + · · ·+ Y 2

t , Y
3
1 + · · ·+ Y 3

n , · · · ).

Example 8. If we want to compute the cardinality of G\TX , then we should sum the sizes of TX~e over all
tuples (e1, . . . , et) of nonnegative integers. According to the Theorem, this is just given by the sum of all
the coefficients which appear in the polynomial

ZG(Y1 + · · ·+ Yt, Y
2
1 + · · ·+ Y 2

t , Y
3
1 + · · ·+ Y 3

t , . . .).

In other words, it is given by evaluating this polynomial at the point Y1 = Y2 = · · · = Yt = 1. This is just
given by

ZG(t, t, . . .),

which recovers the version of Polya’s theorem we proved last week.

The proof of this new version of Polya’s theorem is much like the proof of the old version. We can
compute the size of the set G\TX~e using Burnside’s formula. It is given by

1

|G|
∑
g∈G
|(TX~e )g|.

To prove the formula, it suffices to show that for each g ∈ G, the size of the set (TX~e )g is given by the
coefficient of the expression Y e11 · · ·Y

et
t in the cycle monomial

Zg(Y1 + · · ·+ Yt, Y
2
1 + · · ·+ Y 2

t , Y
3
1 + · · ·+ Y 3

t , · · · ).

If we let ci denote the number of g-orbits on X having size i, this expression is given by

(Y1 + · · ·+ Yt)
c1(Y 2

1 + · · ·+ Y 2
t )c2(Y 3

1 + · · ·+ Y 3
t )c3 · · · ,

from which the desired interpretation can read off easily.

Example 9. Let’s return to the problem of coloring the faces of a regular tetrahedron, up to rotational
symmetry. This time, we will try to keep track of the number of times that each color is used. The relevant
group is the alternating group A4 of even permutations of the set {1, 2, . . . , 4}, acting on the set of faces of
the tetrahedron. Up to conjugacy in Σ4, the group A4 has three types of elements:

• The identity element, which has cycle monomial s4
1.

• Permutations which break into a pair of two cycles. There are three of these, each of which has two
orbits of size 2, and therefore cycle monomial s2

2.

• Permutations given by a 3-cycle and a fixed point. There are eight of these, each of which has cycle
monomial s1s3.

It follows that the cycle index of the alternating group A4 (with its standard action on {1, 2, 3, 4}) is given
by

ZG(s1, s2, . . .) =
s4

1 + 3s2
2 + 8s1s3

12
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To figure out the number of colorings, we substitute the power sum Y i1 + Y i2 + · · · + Y it for the variable
si, to obtain the sum

1

12
(Y1 + · · ·+ Yt)

4 +
1

4
(Y 2

1 + · · ·+ Y 2
t )2 +

2

3
(Y1 + · · ·+ Yt)(Y

3
1 + · · ·+ Y 3

t ).

For example, suppose that t = 4, and we ask how many ways we can color the faces of a tetrahedron
so that each color is used exactly once. Then we are looking for the coefficient of Y1Y2Y3Y4 in the above
expression. We may therefore ignore the last two terms in the sum: we are looking for the coefficient of
Y1Y2Y3Y4 in the expression 1

12 (Y1 +Y2 +Y3 +Y4)4, which is 4!
12 = 2. (Of course, we’re just rediscovering that

the alternating group has index 2 in the group Σ4 of all permutations of the faces of the tetrahedron.)
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