
Math 155 (Lecture 10)

September 22, 2011

In the last lecture, we proved the following result:

Theorem 1 (Polya Enumeration Theorem). Let G be a finite group, X a finite G-set, and T a finite set
with t elements. Then the quotient G\TX has cardinality 1

|G|
∑
g∈G t

o(g), where o(g) denotes the number of

g-orbits of the set X.

In this lecture, we will describe some simple applications.

Question 2. Suppose we are given a circular wheel with n spokes. How many ways can the wheel be colored
with t colors (up to rotational symmetries)?

In the situation of Question 2, the relevant symmetry group is the cyclic group G = Z/nZ of order n,
acting on itself by translation.

Example 3. Let n be a prime number p. Then every non-identity element of G generates G. It follows that

o(g) =

{
1 if g 6= e

p if g = e.

Applying Polya’s formula, we deduce that the number of colorings is

1

p
((p− 1)t+ tp) = t+

tp − t
p

. In particular, this reproduces our proof from the first lecture that tp − t is divisible by p.

Example 4. Let n = p2 for some prime number p. The elements of the group Z/p2Z have three types:

• If d is not divisible by p, then the residue class of d in G = Z/p2Z is a generator, and has only one
orbit on G. There are p2 − p such residue classes.

• If d is divisible by p but not by p2, then d generates a subgroup of Z/p2Z having size p, and therefore
has exactly p orbits. There are p− 1 residue classes of such integers in Z/p2Z.

• The identity element of Z/p2Z has p2 orbits.

We conclude that the number of colorings is given by

1

p2
((p2 − p)t+ (p− 1)tp + tp

2

) = t+
tp − t
p

+
tp

2 − tp

p2
.

Since the first two terms are integers, we conclude that tp
2
−tp
p2 is also an integer.
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Example 5. More generally, suppose that n = pk for some integer k. Every element of Z/nZ is given by
the residue class of some integer d. Let pa be the largest power of p that divides d. If a ≥ k, then the residue
class of d is the identity of G, which has exactly pk orbits. Otherwise, the residue class of d has order pk−a,
and therefore has exactly pa orbits. For fixed a < k, there are exactly pk−a − pk−a−1 such residue classes.
It follows that the answer to Question 2 is given by

1

pk
(tp

k

+
∑
a<k

(pk−a − pk−a−1)tp
a

)) = t+
tp − t
p

+
tp

2 − tp

p2
+
tp

3 − tp2

p3
+ · · ·+ tp

k − tpk−1

pk
.

Subtracting the analogous expression for the cyclic group Z/pk−1Z, we obtain the following generalization
of Fermat’s Little Theorem:

Proposition 6. Let t ≥ 0 and k ≥ 1 be integers and let p be a prime number. Then tp
k − tpk−1

is divisible
by pk.

Question 7. In how many ways can one paint the faces of a tetrahedron with t colors, up to rotational
symmetry?

The rotational symmetries of a tetrahedron form a subgroup of the group Σ4 of all permutations of the
faces of the tetrahedron. It is not difficult to see that this subgroup is the group of all even permutations of
four elements. It contains three types of elements:

(a) The identity permutation, which has four orbits on the set of faces.

(b) Permutations which fix one face and cyclically permute the other three. These have two orbits on the
set of faces, and there are eight such permutations.

(c) Permutations which exchange two pairs of faces. There are three such permutations, and each has two
orbits on the set of faces.

It follows from Polya’s theorem that the answer to Question 7 is given by

1

12
(t4 + 8t2 + 3t2) = t2 +

t4 − t2

12
.

Question 8. Up to isomorphism, how many graphs are there with n vertices?

Equivalently, how large is the set Σn\S, where Σn denotes the symmetric group on n letters and S is the
set of graphs with vertex set {1, 2, . . . , n}? Let E denote the set of unordered pairs of distinct elements of
{1, . . . , n}: then E is a set with

(
n
2

)
elements, acted on by Σn. The set S is just the collection of all subsets

of E. Equivalently, we can identify S with the set of all functions E → {0, 1}. This identification places
our problem in the context of Polya’s theorem: we are trying to determine the number of elements of the
quotient

Σn\{0, 1}E .

Using Polya’s theorem, we see that this number is given by

1

n!

∑
σ∈Σn

2o(σ),

where o(σ) denotes the number of σ-orbits on the set E.

Example 9. Let’s take n = 6. The set E has
(

6
2

)
= 15 elements. There are several types of permutations

to consider:

(a) The identity permutation, with cycle structure (1)(2)(3)(4)(5)(6). There is exactly one such permuta-
tion and it has 15 orbits on E, and therefore contributes 215 = 32768 to the sum.
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(b) Permutations with cycle structure (12)(3)(4)(5)(6). There are exactly 15 of these, and each has 11
orbits on E. The total contribution of these terms is therefore 15× 211 = 30720.

(c) Permutations with cycle structure (12)(34)(5)(6). There are 45 of these, and each has 9 orbits on E.
The total contribution of these terms is therefore 45× 29 = 23040.

(d) Permutations with cycle structure (12)(34)(56). There are 15 of these, and each has 9 orbits on E.
The total contribution of these terms is therefore 15× 29 = 7680.

(e) Permutations with cycle structure (123)(4)(5)(6). There are 40 of these, and each has 7 orbits on E.
The total contribution of these terms is therefore 40× 27 = 5120.

(f) Permutations with cycle structure (123)(45)(6). There are 120 of these, and each has 5 orbits on E.
The total contribution of these terms is therefore 120× 25 = 3840.

(g) Permutations with cycle structure (123)(456). There are 40 of these, and each has 5 orbits on E. The
total contribution of these terms is therefore 40× 25 = 1280.

(h) Permutations with cycle structure (1234)(5)(6). There are 90 of these, and each has 5 orbits on E.
The total contribution of these terms is therefore 90× 25 = 2880.

(i) Permutations with cycle structure (1234)(56). There are also 90 of these, and each has 5 orbits on E.
We again get a contribution of 90× 25 = 2880.

(j) Permutations with cycle structure (12345)(6). There are 144 of these, and each has 3 orbits on E. We
get a contribution of 144× 23 = 1152.

(k) Permutations with cycle structure (123456). There are 120 of these, and each has 3 orbits on E. We
get a contribution of 120× 23 = 960.

Summing these contributions up, we get∑
σ∈Σ6

2o(σ) = 112320.

It follows that there are exactly 112320
720 = 156 isomorphism classes of graphs with six vertices.
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