Math 155 (Lecture 10)

September 22, 2011

In the last lecture, we proved the following result:

Theorem 1 (Polya Enumeration Theorem). Let G be a finite group, X a finite G-set, and T a finite set with t elements. Then the quotient $G \setminus T^X$ has cardinality $\frac{1}{|G|} \sum_{g \in G} t^{o(g)}$, where o(g) denotes the number of g-orbits of the set X.

In this lecture, we will describe some simple applications.

Question 2. Suppose we are given a circular wheel with n spokes. How many ways can the wheel be colored with t colors (up to rotational symmetries)?

In the situation of Question 2, the relevant symmetry group is the cyclic group $G = \mathbf{Z}/n\mathbf{Z}$ of order n, acting on itself by translation.

Example 3. Let n be a prime number p. Then every non-identity element of G generates G. It follows that

$$o(g) = \begin{cases} 1 & \text{if } g \neq e \\ p & \text{if } g = e. \end{cases}$$

Applying Polya's formula, we deduce that the number of colorings is

$$\frac{1}{p}((p-1)t + t^p) = t + \frac{t^p - t}{p}$$

. In particular, this reproduces our proof from the first lecture that $t^p - t$ is divisible by p.

Example 4. Let $n = p^2$ for some prime number p. The elements of the group $\mathbf{Z}/p^2\mathbf{Z}$ have three types:

- If d is not divisible by p, then the residue class of d in $G = \mathbf{Z}/p^2 \mathbf{Z}$ is a generator, and has only one orbit on G. There are $p^2 p$ such residue classes.
- If d is divisible by p but not by p^2 , then d generates a subgroup of $\mathbf{Z}/p^2\mathbf{Z}$ having size p, and therefore has exactly p orbits. There are p-1 residue classes of such integers in $\mathbf{Z}/p^2\mathbf{Z}$.
- The identity element of $\mathbf{Z}/p^2\mathbf{Z}$ has p^2 orbits.

We conclude that the number of colorings is given by

$$\frac{1}{p^2}((p^2-p)t+(p-1)t^p+t^{p^2})=t+\frac{t^p-t}{p}+\frac{t^{p^2}-t^p}{p^2}.$$

Since the first two terms are integers, we conclude that $\frac{t^{p^2}-t^p}{p^2}$ is also an integer.

Example 5. More generally, suppose that $n = p^k$ for some integer k. Every element of $\mathbf{Z}/n\mathbf{Z}$ is given by the residue class of some integer d. Let p^a be the largest power of p that divides d. If $a \ge k$, then the residue class of d is the identity of G, which has exactly p^k orbits. Otherwise, the residue class of d has order p^{k-a} , and therefore has exactly p^a orbits. For fixed a < k, there are exactly $p^{k-a} - p^{k-a-1}$ such residue classes. It follows that the answer to Question 2 is given by

$$\frac{1}{p^k}(t^{p^k} + \sum_{a < k}(p^{k-a} - p^{k-a-1})t^{p^a})) = t + \frac{t^p - t}{p} + \frac{t^{p^2} - t^p}{p^2} + \frac{t^{p^3} - t^{p^2}}{p^3} + \dots + \frac{t^{p^k} - t^{p^{k-1}}}{p^k}.$$

Subtracting the analogous expression for the cyclic group $\mathbf{Z}/p^{k-1}\mathbf{Z}$, we obtain the following generalization of Fermat's Little Theorem:

Proposition 6. Let $t \ge 0$ and $k \ge 1$ be integers and let p be a prime number. Then $t^{p^k} - t^{p^{k-1}}$ is divisible by p^k .

Question 7. In how many ways can one paint the faces of a tetrahedron with t colors, up to rotational symmetry?

The rotational symmetries of a tetrahedron form a subgroup of the group Σ_4 of all permutations of the faces of the tetrahedron. It is not difficult to see that this subgroup is the group of all *even* permutations of four elements. It contains three types of elements:

- (a) The identity permutation, which has four orbits on the set of faces.
- (b) Permutations which fix one face and cyclically permute the other three. These have two orbits on the set of faces, and there are eight such permutations.
- (c) Permutations which exchange two pairs of faces. There are three such permutations, and each has two orbits on the set of faces.
- It follows from Polya's theorem that the answer to Question 7 is given by

$$\frac{1}{12}(t^4 + 8t^2 + 3t^2) = t^2 + \frac{t^4 - t^2}{12}.$$

Question 8. Up to isomorphism, how many graphs are there with *n* vertices?

Equivalently, how large is the set $\Sigma_n \setminus S$, where Σ_n denotes the symmetric group on n letters and S is the set of graphs with vertex set $\{1, 2, \ldots, n\}$? Let E denote the set of unordered pairs of distinct elements of $\{1, \ldots, n\}$: then E is a set with $\binom{n}{2}$ elements, acted on by Σ_n . The set S is just the collection of all subsets of E. Equivalently, we can identify S with the set of all functions $E \to \{0, 1\}$. This identification places our problem in the context of Polya's theorem: we are trying to determine the number of elements of the quotient

$$\Sigma_n \setminus \{0,1\}^E$$

Using Polya's theorem, we see that this number is given by

$$\frac{1}{n!} \sum_{\sigma \in \Sigma_n} 2^{o(\sigma)}$$

where $o(\sigma)$ denotes the number of σ -orbits on the set E.

Example 9. Let's take n = 6. The set E has $\binom{6}{2} = 15$ elements. There are several types of permutations to consider:

(a) The identity permutation, with cycle structure (1)(2)(3)(4)(5)(6). There is exactly one such permutation and it has 15 orbits on E, and therefore contributes $2^{1}5 = 32768$ to the sum.

- (b) Permutations with cycle structure (12)(3)(4)(5)(6). There are exactly 15 of these, and each has 11 orbits on E. The total contribution of these terms is therefore $15 \times 2^{1}1 = 30720$.
- (c) Permutations with cycle structure (12)(34)(5)(6). There are 45 of these, and each has 9 orbits on E. The total contribution of these terms is therefore $45 \times 2^9 = 23040$.
- (d) Permutations with cycle structure (12)(34)(56). There are 15 of these, and each has 9 orbits on E. The total contribution of these terms is therefore $15 \times 2^9 = 7680$.
- (e) Permutations with cycle structure (123)(4)(5)(6). There are 40 of these, and each has 7 orbits on E. The total contribution of these terms is therefore $40 \times 2^7 = 5120$.
- (f) Permutations with cycle structure (123)(45)(6). There are 120 of these, and each has 5 orbits on E. The total contribution of these terms is therefore $120 \times 2^5 = 3840$.
- (g) Permutations with cycle structure (123)(456). There are 40 of these, and each has 5 orbits on E. The total contribution of these terms is therefore $40 \times 2^5 = 1280$.
- (h) Permutations with cycle structure (1234)(5)(6). There are 90 of these, and each has 5 orbits on E. The total contribution of these terms is therefore $90 \times 2^5 = 2880$.
- (i) Permutations with cycle structure (1234)(56). There are also 90 of these, and each has 5 orbits on E. We again get a contribution of $90 \times 2^5 = 2880$.
- (j) Permutations with cycle structure (12345)(6). There are 144 of these, and each has 3 orbits on E. We get a contribution of $144 \times 2^3 = 1152$.
- (k) Permutations with cycle structure (123456). There are 120 of these, and each has 3 orbits on E. We get a contribution of $120 \times 2^3 = 960$.

Summing these contributions up, we get

$$\sum_{\sigma \in \Sigma_6} 2^{o(\sigma)} = 112320.$$

It follows that there are exactly $\frac{112320}{720} = 156$ isomorphism classes of graphs with six vertices.