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This course is meant to serve as an introduction to the study of combinatorics. We might therefore
begin by asking the question: what is combinatorics? According to Wikipedia, combinatorics is “a branch
of mathematics concerning the study of finite or countable discrete structures.” Of course, this definition
is very broad, and encompasses many more topics than we can discuss in a one-semester course. After
canvassing some experts, I’ve come to the conclusion that there is no real consensus as to what should be
taught in a course like this one.

What can we say about finite mathematical structures? One answer is obvious: if a set is finite, we can
ask how many elements it has. This leads to the subject of enumerative combinatorics, which is concerned
with counting problems.

Example 1. Let S = {1, . . . ,m} and T = {1, . . . , n} be finite sets. How many functions are there from S
to T? Since there are m choices for where each element of S can go, the answer is nm.

Example 2. Let S = {1, . . . , n} be a set with m elements. Then there are precisely nn functions from S
to itself. How many of these functions are permutations of S? Recall that a permutation of S is a bijective
map π : S → S. Since there are n choices for π(1), (n− 1) remaining choices for π(2), and so forth, we see
that the number of permutations is

n! = n(n− 1)(n− 2) · · · (3)(2)(1)

Example 3. Let S = {1, . . . , n} be a set with n elements. A derangement of S is a permutation of S with no
fixed points: that is, a permutation π such that π(i) 6= i for 1 ≤ i ≤ n. How many derangements does the set
S has? What is the probability that a randomly chosen permutation is a derangement? (This question has
an interesting and perhaps surprising answer. We will later see that as n grows, the probability approaches
1
e , where e is Euler’s constant.)

Example 1 is a completely elementary observation. Nevertheless, with a little bit of cleverness, one can
extract some interesting consequences.

Theorem 4 (Fermat’s Little Theorem). Let n be an integer and let p be a prime number. Then

np ≡ n (mod p).

Theorem 4 is an absolutely fundamental result in number theory. It has many proofs; we will sketch one
that uses Example 1 and some other basic counting principles.

Proof. We might as well assume that n is nonnegative (otherwise, replace n by −n). We wish to show that
the difference np − n is divisible by p: in other words, that np = n + pd for some integer d. Let X denote
the collection of all functions from the set {1, . . . , p} to the set {1, . . . , n}. We will denote the number of
elements of X by |X|, so that |X| = np.

Now let us observe that the set X has some symmetry: there is a translation map T : X → X, given by
the formula

(Tf)(i) =

{
f(i− 1) if i > 1

f(p) if i = 1.
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We can therefore partition the set X into two subsets:

• Let X0 denote the collection of functions f : {1, . . . p} → {1, . . . , n} which are translation invariant:
that is, which satisfy Tf = f . This means that f(i) = f(i+ 1) for 0 < i < p, so that the function f is
necessarily constant. There is one element of X0 for every element of {1, . . . , n}, so that |X0| = n.

• Let X1 be the collection of all functions f : {1, . . . , p} → {1, . . . , n} which are not translation invari-
ant: that is, which satisfy Tf 6= f . It then follows (since p is a prime number) that the functions
Tf, T 2f, . . . , T p−1f, T pf = f are all distinct (and also belong to X1). It follows that the set X1 can be
partitioned into finitely many subsets, each of which has size exactly p, so that the number of elements
of X1 is divisible by p.

We now conclude the proof by noting that

np = |X| = |X0|+ |X1| = n+ pd.

Let us now isolate some of the principles at work in the proof of Theorem 4.

(a) One way to prove that two numbers are equal is to try to solve a counting problem in two different
ways.

(b) If a set S is given as a disjoint union of subsets S0 and S1, then |S| = |S0|+ |S1|. Using this, we can
often break a complicated counting problem down into simpler constituents.

(c) Studying symmetries can give lots of useful information.

We will meet many other counting principles (some of which are quite a bit more sophisticated) later in
this course.

Of course, combinatorics is not just about counting problems: there are all sorts of other questions one
can ask about finite mathematical structures. To give another example, it will be useful to introduce a
definition.

Definition 5. A graph consists of a set V (whose elements are called vertices) together with a collection E
of 2-element subsets of V (whose elements are called edges).

If G is a graph, it is helpful to think of the collection of edges of G as a relation on the set V of vertices:
we say that a pair of vertices v and w are adjacent if the set {v, v′} is an edge of G. This relation is symmetric
(if v is adjacent to w, then w is also adjacent to v) and antireflexive (no vertex is adjacent to itself).

Example 6. For every integer n, there is a graph Kn whose vertex set is given by V = {1, . . . , n}, and
whose edge set is given by the collection of all two-element subsets of V (in other words, every pair of distinct
vertices of V is connected by an edge). The graph Kn is called the complete graph on n vertices.

If G is a graph, then a clique of size n is an embedding Kn ↪→ G. In other words, a clique of size n is a
collection of n vertices of G, every one of which is adjacent to each of the others. A typical question might
read something like the following:

(Q) Given a graph G, how large a clique can we find? If G is sufficiently large, is it guaranteed to have
large cliques?

Of course, the answer to this question is “no” in general: if G is a graph with no edges, then it has no
cliques of size ≥ 2. However, such a graph will generally have very large anti-cliques: an anti-clique is a
collection of vertices, every one of which is not adjacent to any of the others.

Here is an example of one of the theorems we will prove in this class:

Theorem 7 (Ramsey’s Theorem). Let k ≥ 0 be an integer. Then there exists an integer n such that, for
any graph G with at least n vertices, either G contains a clique of size k or G contains an anti-clique of size
k.
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