Math 114, Problem Set 6 (due Monday, October 28)

October 21, 2013
(1) Let X be a metric space, and let $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence of points in X which satisfies the following conditions:
(a) For every subsequence $\left\{x_{i_{0}}, x_{i_{1}}, \ldots\right\}$ of $\left\{x_{n}\right\}_{n \geq 0}$, there exists a further subsequence $\left\{x_{i_{j_{0}}}, x_{i_{j_{1}}}, \ldots\right\}$ which converges.
(b) For any pair of convergent subsequences $\left\{x_{i_{0}}, x_{i_{1}}, x_{i_{2}}, \ldots\right\},\left\{x_{j_{0}}, x_{j_{1}}, x_{j_{2}}, \ldots\right\}$ of $\left\{x_{n}\right\}_{n \geq 0}$, the limits $\lim \left\{x_{i_{n}}\right\}$ and $\lim \left\{x_{j_{n}}\right\}$ are the same.
Show that the sequence $\left\{x_{n}\right\}_{n>0}$ converges.
(2) Let E be a measurable subset of $\mathbb{R}^{m} \times \mathbb{R}^{n}$. For each $x \in \mathbb{R}^{m}$, let $E_{x}=\left\{y \in \mathbb{R}^{n}:(x, y) \in E\right\}$. Show that E has measure zero if and only if the sets E_{x} have measure zero for almost every x.
(3) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function given by

$$
f(x, y)= \begin{cases}1 & \text { if }\left(\exists n \in \mathbf{Z}_{\geq 0}\right)[n \leq x, y<n+1] \\ -1 & \text { if }\left(\exists n \in \mathbf{Z}_{\geq 0}\right)[n \leq x<n+1 \leq y<n+2] \\ 0 & \text { otherwise } .\end{cases}
$$

For each $x \in \mathbb{R}$, let f_{x} denote the function given by $f_{x}(y)=f(x, y)$. For each $y \in \mathbb{R}$, let f_{y} denote the function given by $f_{y}(x)=f(x, y)$. Show that the functions

$$
x \mapsto \int_{\mathbb{R}} f_{x} \quad y \mapsto \int_{\mathbb{R}} f_{y}
$$

are integrable, and compute their integrals (in other words, compute the double integrals $\int\left(\int f(x, y) d x\right) d y$ and $\int\left(\int f(x, y) d y\right) d x$.) Why does the result not contradict Fubini's theorem?
(4) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying the inequality

$$
\phi\left(\frac{x+y}{2}\right) \leq \frac{\phi(x)+\phi(y)}{2}
$$

for all $x, y \in \mathbb{R}$. Show that ϕ is convex: that is, for each real number $\lambda \in[0,1]$, we have

$$
\phi(\lambda x+(1-\lambda) y) \leq \lambda \phi(x)+(1-\lambda) \phi(y)
$$

for all $x, y \in \mathbb{R}$.

