Math 114, Problem Set 5 (due Monday, October 21)

October 14, 2013
(1) Let $E \subseteq \mathbb{R}^{n}$ be a measurable set, and let $f_{0} \leq f_{1} \leq f_{2} \leq \cdots$ be an increasing sequence of integrable functions on E for which the the sequence of integrals $\left\{\int_{E} f_{i}\right\}_{i \geq 0}$ is bounded. Show that the sequence $\left\{f_{i}\right\}$ converges almost everywhere to an integrable function f, and that $\int_{E} f$ is a limit of the sequence $\left\{\int_{E} f_{i}\right\}_{i \geq 0}$.
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an integrable function. Show that $\int_{\mathbb{R}} f$ is a limit of the sequence of real numbers $\left\{\int_{-n}^{n} f\right\}_{n \geq 0}$. Here $\int_{-n}^{n} f$ denotes the integral $\left.\int_{[-n, n]} f\right|_{[-n, n]}$.
(3) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an integrable function, and suppose that $\left.\int_{B} f\right|_{B}=0$ for every open box $B \subseteq \mathbb{R}^{n}$. Prove that f vanishes almost everywhere.
(4) Let E be the subset of $[0,1]$ consisting of those real numbers whose decimal expansion contains infinitely many occurrences of the digit 7 . Show that E is a measurable set, and compute its measure.

