Math 114, Problem Set 1 (due Monday, September 16)

September 9, 2013
(1) Let $f:[0, \pi] \rightarrow \mathbb{R}$ be a continuous function satisfying $f(0)=f(\pi)=0$, and define real numbers a_{1}, a_{2}, \ldots by the formula

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) f(x) d x
$$

Show that the sum $\sum_{n>0} a_{n}^{2}$ converges (hint: compare the sum with the integral $\left.\int_{0}^{\pi} f(x)^{2} d x\right)$.
(2) Let $f:[0, \pi] \rightarrow \mathbb{R}$ be the discontinuous function given by the formula

$$
f(x)= \begin{cases}1 & \text { if } \frac{\pi}{4}<x<\frac{3 \pi}{4} \\ 0 & \text { otherwise }\end{cases}
$$

Determine the real numbers $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) f(x) d x$. Using the identity

$$
\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\tan ^{-1}(1)=\frac{\pi}{4}
$$

compute the value of the infinite sums

$$
g(x)=\sum_{n>0} a_{n} \sin (n x)
$$

when $x=\frac{\pi}{4}$ and $\frac{3 \pi}{4}$.
(3) Let $V \subseteq \mathbb{R}^{n}$ be a linear subspace of dimension $<n$. Show that the outer measure $\mu^{*}(V)$ is equal to zero.

