Math 114 Midterm (with solutions)

October 16, 2013
(1) Let $C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ be the unit circle. Show that C has measure zero (when regarded as a subset of the Euclidean plane $\left.\mathbb{R}^{2}\right)$.

For each positive real number r, define a function μ_{r} on measurable subsets of \mathbb{R}^{2} by the formula $\mu_{r}(E)=\mu(r E)$. Then μ_{r} is countably additive and translation invariant, so (as we saw in class) there exists a real number λ such that $\mu_{r}(E)=\lambda \mu(E)$ for every measurable subset $E \subseteq \mathbb{R}^{2}$. Taking $E=(0,1)^{2}$, we deduce that

$$
\lambda=\lambda \mu(E)=\mu_{r}(E)=\mu(r E)=\mu\left((0, r)^{2}\right)=r^{2}
$$

Let $B=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$. Then B an open subset of \mathbb{R}^{2}, hence measurable. It is contained in an open box, and therefore has finite measure. Note that for each $r>1, r B$ contains C and B as disjoint subsets. We therefore have

$$
\mu(C)+\mu(B) \leq \mu(r B)=\mu_{r}(B)=r^{2} \mu(B)
$$

Since B contains an open box, it has positive measure. Dividing by $\mu(B)$, we obtain an inequality

$$
\frac{\mu(C)}{\mu(B)}+1 \leq r^{2}
$$

Since this inequality holds for an arbitrary real number $r^{2} \geq 1$, we must have $\frac{\mu(C)}{\mu(B)}=0$, so that $\mu(C)=0$.
(2) Let $E \subseteq \mathbb{R}^{n}$ be a measurable set, and let f_{1}, f_{2}, \ldots be a sequence of measurable functions from E into \mathbb{R}. Show that the set $S=\left\{x \in E:\left\{f_{i}(x)\right\}_{i>0}\right.$ converges $\}$ is a measurable subset of E.

Note that the sequence of real numbers $\left\{f_{i}(x)\right\}_{i>0}$ converges if and only if it is a Cauchy sequence: that is, if and only if

$$
(\forall k>0)(\exists m)(\forall i, j>m)\left|f_{i}(x)-f_{j}(x)\right|<\frac{1}{k}
$$

Since each f_{i} is a measurable function, the differences $f_{i}-f_{j}$ are measurable functions, and therefore the sets

$$
S_{i, j, k}=\left\{x \in E:\left|f_{i}(x)-f_{j}(x)\right|<\frac{1}{k}\right\}
$$

are measurable. Because the collection of measurable sets is closed under countable unions and intersections, it follows also that

$$
S=\bigcap_{k>0} \bigcup_{m} \bigcap_{i, j>m} S_{i, j, k}
$$

is measurable.
(3) Let $E \subseteq \mathbb{R}^{n}$ be a measurable set and let $f: E \rightarrow \mathbb{R}$ be an integrable function. Prove that for each $\epsilon>0$, there exists a positive real number δ with the following property: for every measurable subset $S \subseteq E$ with $\mu(S)<\delta$, we have

$$
-\epsilon<\left.\int_{S} f\right|_{S}<\epsilon
$$

For each integer m, let $f_{m}: E \rightarrow \mathbb{R}^{n}$ be the function given by

$$
f_{m}(x)= \begin{cases}|f(x)| & \text { if }|f(x)| \leq m \\ m & \text { otherwise }\end{cases}
$$

Then f_{1}, f_{2}, \ldots is a monotone sequence of functions converging pointwise to $|f|$. Using the Monotone Convergence Theorem, we can choose an integer m such that

$$
\int_{E} f_{m}>\left(\int_{E}|f|\right)-\frac{\epsilon}{2}
$$

Set $\delta=\frac{\epsilon}{2 m}$. If $S \subseteq E$ is a measurable set with $\mu(S)<\delta$, then we have

$$
\begin{aligned}
\left|\int_{S} f\right| & \leq \int_{S}|f| \\
& \leq \int_{S} f_{m}+\int_{S}\left(|f|-f_{m}\right) \\
& \leq \int_{S} f_{m}+\int_{E}\left(|f|-f_{m}\right) \\
& \leq m \mu(S)+\frac{\epsilon}{2} \\
& <m \delta+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

