PROBLEM SET VIII: PROBLEMS III, IV

PATRICK RYAN

Problem 1. Let $f: V \to W$ be a linear map between normed vector spaces. Show that if V is finite-dimensional, then f is continuous.

Proof. Let $\{e_1, ..., e_n\}$ be a basis for V. Then

$$\|f(v)\|_{W} = \|f(v_{1}e_{1} + \dots + v_{n}e_{n})\|_{W} = \|v_{1}f(e_{1}) + \dots + v_{n}f(e_{n})\|_{W}$$

$$\leq |v_{1}| \|f(e_{1})\|_{W} + \dots + |v_{n}| \|f(e_{n})\|_{W} \leq \sum_{k=1}^{n} |v_{k}| \left(\max_{1 \leq k \leq n} \|f(e_{k})\|_{W}\right).$$

Define the 1-norm, $\|\cdot\|_1 : V \to \mathbb{R}$, by

$$||v||_1 = \sum_{k=1}^n |v_k|$$
, with $v = \sum_{k=1}^n v_k e_k$.

It suffices to show that $||v||_1 \leq \alpha ||v||_V$ for arbitrary constant α and V a finite dimensional vector space. We have the following

$$\|v\|_{V} = \left\|\sum_{k=1}^{n} v_{k} e_{k}\right\|_{V} \le \sum_{k=1}^{n} |v_{k}| \|e_{k}\|_{V} \le \left(\max_{1 \le k \le n} \|e_{k}\|_{V}\right) \|v\|_{1}$$

This implies $||v||_V \leq \beta ||v||_1$ for some constant β . Thus, our norm on V, $||\cdot||_V : V \to \mathbb{R}$, is continuous with respect to the topology induced by the 1-norm. Taking $||v - w||_1 \leq \varepsilon$, we see that

$$|\|v\|_V - \|w\|_V| \le \|v - w\|_V \le M\varepsilon_1$$

by the Triangle Inequality. Consider the compact set $\Omega = \{v \in V : \|v\|_1 = 1\}$. By the compactness of our set and the continuity of the norm on V, $\|\cdot\|_V$ achieves a minimum on Ω . Denoting this minimum by ξ , we have $0 < \xi \le \|v\|_V$, for any $v \in V$ where $\|v\|_1 = 1$. Thus, $\xi \|v\|_1 \le \|v\|_V$. Selecting our constant α appropriately yields our desired result.

Problem 2. Let P be a partially ordered set and suppose that every linearly ordered subset of P has an upper bound. Prove that P has a maximal element by completing the argument outlined in class. Assume (for a contradiction) that P has no maximal element.

(a) Show that for each linearly ordered subset $Q \subseteq P$, there exists an element $\lambda(Q) \in P$ such that $q < \lambda(Q)$ for each $q \in Q$.

We will say that a subset $Q \subseteq P$ is a *good chain* if Q is well-ordered and each element $x \in Q$ satisfies the formula $x = \lambda (\{q \in Q : q < x\})$.

(b) Show that there is no largest good chain in P.

(c) Show that if Q and Q' are good chains, then exactly one of the following conditions holds: (i) Q = Q'; (ii) There exists an element $q_0 \in Q$ such

Date: November 11, 2013.

that $Q' = \{q \in Q : q < q_0\}$; (iii) There exists an element $q'_0 \in Q'$ such that $Q = \{q' \in Q' : q' < q'_0\}$.

(d) Show that if $\{Q_{\alpha}\}$ is a collection of good chains, then the union $\bigcup Q_{\alpha}$ is also a good chain.

(e) Find a contradiction between (b) and (d).

Proof. (a) Let $x \in Q$ be an upper bound for Q. Since x is not maximal, there exists some $\tilde{x} \in P$ such that $\tilde{x} > x$ (by the Axiom of Choice). Set $\lambda(Q) = \tilde{x}$, so that for any $y \in Q$, we have $y \leq x < \lambda(Q)$.

(b) Let us assume that Q is the largest good chain in P. Let $Q^+ = Q \cup \{\lambda(Q)\}$. For each $x \in Q$, we have that $x = \lambda(\{q \in Q^+ : q < x\})$, since $\lambda(Q) > x$ for all $x \in Q$. Definitionally, $\lambda(Q) = \lambda(\{q \in Q^+ : q < x\})$, so Q^+ is a good chain.

(c) If Q = Q' we are done. Thus, let us suppose that Q, Q' are good chains and $Q \neq Q'$. We show that either $Q \subset Q'$ or $Q' \subset Q$. Let Λ be the union of all subsets of P such that $P \subseteq Q$ and $P \subseteq Q'$. Then Λ is the largest such set, which is also well-ordered by the well-ordering of Q and Q'. Suppose that $\Lambda \neq Q$ and $\Lambda \neq Q'$. Then we may select $q \in Q$ and $q' \in Q'$ such that q is the minimal element of Q and $q \notin S$. Define q' analogously. Thus, $\Lambda \subseteq \{x \in Q : x < q\}$ and $\Lambda \subseteq \{x \in Q' : x < q'\}$. Then let x_m be the smallest element of Q such that $x_m < q$ and $x_m \notin \Lambda$. Then we have

$$\{x \in Q : x < x_m\} \subseteq \Lambda \subseteq \{x \in Q' : x < q'\} \subseteq Q.$$

Thus, $x_m = \lambda (\{x \in Q : x < x_m\}) \subseteq Q'$ so $x_m \in Q \cap Q'$. However, x_m could have been appended to Λ , thereby contradicting the maximality of Λ . Thus

$$\Lambda = \{ x \in Q : x < q \} = \{ x \in Q' : x < q' \} \Rightarrow \lambda \left(\Lambda \right) = q = q'.$$

However, we could have appended q to Λ , again contradicting the maximality of Λ . Thus, either $Q \subset Q'$ or $Q' \subset Q$.

WLOG suppose that $Q \subset Q'$, and let $q' \subset Q'$ be the smallest element of Q' such that $q' \notin Q$. We have $\{x \in Q' : x < q'\} \subseteq Q$. Suppose that $Q \neq \{x \in Q' : x < q'\}$, and let x_m be the smallest element in Q such that $x_m > q'$. However, by definition and total ordering, we have

$$x_m = \lambda \left(\{ x \in Q : x < x_m \} \right) = \lambda \left(\{ x \in Q : x < q' \} \right) = q'.$$

Contradiction. Thus, $Q = \{x \in Q' : x < q'\}$. The second case follows analogously if $Q' \subset Q$.

(d) Let $\{Q_{\alpha}\}$ be a collection of good chains. From (c), we know that for any two elements Q_{θ}, Q_{ω} of $\{Q_{\alpha}\}$, we have $Q_{\theta} \subset Q_{\omega}, Q_{\omega} \subset Q_{\theta}$, or $Q_{\theta} = Q_{\omega}$. Thus, the union of any number of good chains will be equal to a good chain, and $\bigcup Q_{\alpha}$ is a good chain.

(e) The above implies that $\bigcup Q_{\alpha}$ is the largest good chain. This contradicts (b), so we conclude that P has a maximal element.