PROBLEM SET VIII: PROBLEMS III, IV

PATRICK RYAN

Problem 1. Let $f: V \rightarrow W$ be a linear map between normed vector spaces. Show that if V is finite-dimensional, then f is continuous.

Proof. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for V. Then

$$
\begin{aligned}
& \|f(v)\|_{W}=\left\|f\left(v_{1} e_{1}+\cdots+v_{n} e_{n}\right)\right\|_{W}=\left\|v_{1} f\left(e_{1}\right)+\cdots+v_{n} f\left(e_{n}\right)\right\|_{W} \\
& \leq\left|v_{1}\right|\left\|f\left(e_{1}\right)\right\|_{W}+\cdots+\left|v_{n}\right|\left\|f\left(e_{n}\right)\right\|_{W} \leq \sum_{k=1}^{n}\left|v_{k}\right|\left(\max _{1 \leq k \leq n}\left\|f\left(e_{k}\right)\right\|_{W}\right) .
\end{aligned}
$$

Define the 1-norm, $\|\cdot\|_{1}: V \rightarrow \mathbb{R}$, by

$$
\|v\|_{1}=\sum_{k=1}^{n}\left|v_{k}\right|, \quad \text { with } v=\sum_{k=1}^{n} v_{k} e_{k}
$$

It suffices to show that $\|v\|_{1} \leq \alpha\|v\|_{V}$ for arbitrary constant α and V a finite dimensional vector space. We have the following

$$
\|v\|_{V}=\left\|\sum_{k=1}^{n} v_{k} e_{k}\right\|_{V} \leq \sum_{k=1}^{n}\left|v_{k}\right|\left\|e_{k}\right\|_{V} \leq\left(\max _{1 \leq k \leq n}\left\|e_{k}\right\|_{V}\right)\|v\|_{1}
$$

This implies $\|v\|_{V} \leq \beta\|v\|_{1}$ for some constant β. Thus, our norm on $V,\|\cdot\|_{V}$: $V \rightarrow \mathbb{R}$, is continuous with respect to the topology induced by the 1-norm. Taking $\|v-w\|_{1} \leq \varepsilon$, we see that

$$
\left|\|v\|_{V}-\|w\|_{V}\right| \leq\|v-w\|_{V} \leq M \varepsilon
$$

by the Triangle Inequality. Consider the compact set $\Omega=\left\{v \in V:\|v\|_{1}=1\right\}$. By the compactness of our set and the continuity of the norm on $V,\|\cdot\|_{V}$ achieves a minimum on Ω. Denoting this minimum by ξ, we have $0<\xi \leq\|v\|_{V}$, for any $v \in V$ where $\|v\|_{1}=1$. Thus, $\xi\|v\|_{1} \leq\|v\|_{V}$. Selecting our constant α appropriately yields our desired result.

Problem 2. Let P be a partially ordered set and suppose that every linearly ordered subset of P has an upper bound. Prove that P has a maximal element by completing the argument outlined in class. Assume (for a contradiction) that P has no maximal element.
(a) Show that for each linearly ordered subset $Q \subseteq P$, there exists an element $\lambda(Q) \in P$ such that $q<\lambda(Q)$ for each $q \in Q$.

We will say that a subset $Q \subseteq P$ is a good chain if Q is well-ordered and each element $x \in Q$ satisfies the formula $x=\lambda(\{q \in Q: q<x\})$.
(b) Show that there is no largest good chain in P.
(c) Show that if Q and Q^{\prime} are good chains, then exactly one of the following conditions holds: (i) $Q=Q^{\prime}$; (ii) There exists an element $q_{0} \in Q$ such

[^0]that $Q^{\prime}=\left\{q \in Q: q<q_{0}\right\} ;$ (iii) There exists an element $q_{0}^{\prime} \in Q^{\prime}$ such that $Q=\left\{q^{\prime} \in Q^{\prime}: q^{\prime}<q_{0}^{\prime}\right\}$.
(d) Show that if $\left\{Q_{\alpha}\right\}$ is a collection of good chains, then the union $\bigcup Q_{\alpha}$ is also a good chain.
(e) Find a contradiction between (b) and (d).

Proof. (a) Let $x \in Q$ be an upper bound for Q. Since x is not maximal, there exists some $\tilde{x} \in P$ such that $\tilde{x}>x$ (by the Axiom of Choice). Set $\lambda(Q)=\tilde{x}$, so that for any $y \in Q$, we have $y \leq x<\lambda(Q)$.
(b) Let us assume that Q is the largest good chain in P. Let $Q^{+}=Q \cup\{\lambda(Q)\}$. For each $x \in Q$, we have that $x=\lambda\left(\left\{q \in Q^{+}: q<x\right\}\right)$, since $\lambda(Q)>x$ for all $x \in Q$. Definitionally, $\lambda(Q)=\lambda\left(\left\{q \in Q^{+}: q<x\right\}\right)$, so Q^{+}is a good chain.
(c) If $Q=Q^{\prime}$ we are done. Thus, let us suppose that Q, Q^{\prime} are good chains and $Q \neq Q^{\prime}$. We show that either $Q \subset Q^{\prime}$ or $Q^{\prime} \subset Q$. Let Λ be the union of all subsets of P such that $P \subseteq Q$ and $P \subseteq Q^{\prime}$. Then Λ is the largest such set, which is also wellordered by the well-ordering of Q and Q^{\prime}. Suppose that $\Lambda \neq Q$ and $\Lambda \neq Q^{\prime}$. Then we may select $q \in Q$ and $q^{\prime} \in Q^{\prime}$ such that q is the minimal element of Q and $q \notin S$. Define q^{\prime} analogously. Thus, $\Lambda \subseteq\{x \in Q: x<q\}$ and $\Lambda \subseteq\left\{x \in Q^{\prime}: x<q^{\prime}\right\}$. Then let x_{m} be the smallest element of Q such that $x_{m}<q$ and $x_{m} \notin \Lambda$. Then we have

$$
\left\{x \in Q: x<x_{m}\right\} \subseteq \Lambda \subseteq\left\{x \in Q^{\prime}: x<q^{\prime}\right\} \subseteq Q
$$

Thus, $x_{m}=\lambda\left(\left\{x \in Q: x<x_{m}\right\}\right) \subseteq Q^{\prime}$ so $x_{m} \in Q \cap Q^{\prime}$. However, x_{m} could have been appended to Λ, thereby contradicting the maximality of Λ. Thus

$$
\Lambda=\{x \in Q: x<q\}=\left\{x \in Q^{\prime}: x<q^{\prime}\right\} \Rightarrow \lambda(\Lambda)=q=q^{\prime}
$$

However, we could have appended q to Λ, again contradicting the maximality of Λ. Thus, either $Q \subset Q^{\prime}$ or $Q^{\prime} \subset Q$.

WLOG suppose that $Q \subset Q^{\prime}$, and let $q^{\prime} \subset Q^{\prime}$ be the smallest element of Q^{\prime} such that $q^{\prime} \notin Q$. We have $\left\{x \in Q^{\prime}: x<q^{\prime}\right\} \subseteq Q$. Suppose that $Q \neq\left\{x \in Q^{\prime}: x<q^{\prime}\right\}$, and let x_{m} be the smallest element in Q such that $x_{m}>q^{\prime}$. However, by definition and total ordering, we have

$$
x_{m}=\lambda\left(\left\{x \in Q: x<x_{m}\right\}\right)=\lambda\left(\left\{x \in Q: x<q^{\prime}\right\}\right)=q^{\prime} .
$$

Contradiction. Thus, $Q=\left\{x \in Q^{\prime}: x<q^{\prime}\right\}$. The second case follows analogously if $Q^{\prime} \subset Q$.
(d) Let $\left\{Q_{\alpha}\right\}$ be a collection of good chains. From (c), we know that for any two elements Q_{θ}, Q_{ω} of $\left\{Q_{\alpha}\right\}$, we have $Q_{\theta} \subset Q_{\omega}, Q_{\omega} \subset Q_{\theta}$, or $Q_{\theta}=Q_{\omega}$. Thus, the union of any number of good chains will be equal to a good chain, and $\bigcup Q_{\alpha}$ is a good chain.
(e) The above implies that $\bigcup Q_{\alpha}$ is the largest good chain. This contradicts (b), so we conclude that P has a maximal element.

[^0]: Date: November 11, 2013.

