PROBLEM SET VI SOLUTIONS $(3,4)$

PATRICK RYAN

Problem 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function given by

$$
f(x, y)= \begin{cases}1 & \text { if }\left(\exists n \in \mathbb{Z}_{\geq 0}\right)[n \leq x, y<n+1] \\ -1 & \text { if }\left(\exists n \in \mathbb{Z}_{\geq 0}\right)[n \leq x<n+1 \leq y<n+2] \\ 0 & \text { otherwise }\end{cases}
$$

For each $x \in \mathbb{R}$, let f_{x} denote the function given by $f_{x}(y)=f(x, y)$. For each $y \in \mathbb{R}$, let f_{y} denote the function given by $f_{y}(x)=f(x, y)$. Show that the functions

$$
x \mapsto \int_{\mathbb{R}} f_{x}, \quad y \mapsto \int_{\mathbb{R}} f_{y}
$$

are integrable, and compute their integrals (in other words, compute the double integrals $\int\left(\int f(x, y) d x\right) d y$ and $\int\left(\int f(x, y) d y\right) d x$.) Why does the result not contradict Fubini's Theorem?

Proof. We may write

$$
f_{x}(y)= \begin{cases}1, & x \geq 0 \text { and }\lfloor x\rfloor \leq y \leq\lfloor x\rfloor+1 \\ -1, & x \geq 0 \text { and }\lfloor x\rfloor+1 \leq y \leq\lfloor x\rfloor+2 \\ 0, & \text { else }\end{cases}
$$

and

$$
f_{y}(x)= \begin{cases}1, & y \geq 0 \text { and }\lfloor y\rfloor \leq x \leq\lfloor y\rfloor+1 \\ -1, & y \geq 1 \text { and }\lfloor y\rfloor-1 \leq x \leq\lfloor y\rfloor \\ 0, & \text { else }\end{cases}
$$

From this it is clear that

$$
\int_{\mathbb{R}} f_{x}=0, \quad \int_{\mathbb{R}} f_{y}= \begin{cases}1, & y \in[0,1) \\ 0, & \text { else }\end{cases}
$$

Thus, we have that

$$
\int\left(\int f(x, y) d x\right) d y=0, \quad \int\left(\int f(x, y) d y\right) d x=1
$$

This does not contradict Fubini's Theorem because $f(x, y)$ is not an integrable function. Explicitly, observe that $|f| \geq \chi_{\mathscr{S}}$ where $\mathscr{S}=\left\{(x, y): n \leq x, y<n+1, n \in \mathbb{Z}_{\geq 0}\right\}$, and $\mu(\mathscr{S})=\infty$. The measure of \mathscr{S} is infinite because

$$
\mathscr{S}=\bigsqcup_{n=0}^{\infty}\{(x, y): n \leq x, y<n+1\}
$$

[^0]and each $\{(x, y): n \leq x, y<n+1\}$ has measure one. Therefore,
$$
\int_{\mathbb{R}^{2}}|f| \geq \int_{\mathbb{R}^{2}} \chi_{\mathscr{S}}=\mu(\mathscr{S})=\infty
$$

Problem 2. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be the continuous function satisfying the inequality

$$
\phi\left(\frac{x+y}{2}\right) \leq \frac{\phi(x)+\phi(y)}{2}
$$

for all $x, y \in \mathbb{R}$. Show that ϕ is convex; that is, for each real number $\lambda \in[0,1]$, we have

$$
\phi(\lambda x+(1-\lambda) y) \leq \lambda \phi(x)+(1-\lambda) \phi(y)
$$

for all $x, y \in \mathbb{R}$.
Proof. We will demonstrate the convexity condition for every dyadic $\lambda=\alpha / 2^{i} \in$ $[0,1]$ by induction on the power of two in the denominator. We have the base case by assumption. Now suppose that convexity holds for dyadic λ with the exponent in the denominator i or less. Then, taking $\alpha=2 \beta+1$ to be odd, we have

$$
\begin{gathered}
\phi\left(\left(\frac{\alpha}{2^{i+1}}\right) x+\left(1-\frac{\alpha}{2^{i+1}}\right) y\right) \\
\leq \frac{1}{2}\left(\phi\left(\left(\frac{\beta}{2^{i}}\right) x+\left(1-\frac{\beta}{2^{i}}\right) y\right)+\phi\left(\left(\frac{\beta+1}{2^{i}}\right) x+\left(1-\frac{\beta+1}{2^{i}}\right) y\right)\right) \\
\leq \frac{1}{2}\left(\left(\frac{\beta}{2^{i}}+\frac{\beta+1}{2^{i}}\right) \phi(x)+\left(2-\frac{\beta+1}{2^{i}}-\frac{\beta+1}{2^{i+1}}\right) \phi(y)\right) \\
=\left(\frac{\alpha}{2^{i+1}}\right) \phi(x)+\left(1-\frac{\alpha}{2^{i+1}}\right) \phi(y) .
\end{gathered}
$$

More generally, suppose that $\lambda \in[0,1]$, and select a convergent sequence $\left\{\alpha_{i} / 2^{i}\right\} \rightarrow$ λ. Fix $x, y \in \mathbb{R}$, and let $\epsilon>0$. Then, let

$$
f(z)=\phi(z x+(1-z) y) .
$$

By continuity and convergence, there exists some $n>0$ such that

$$
\left|\frac{\alpha_{n}}{2^{n}}-\lambda\right|<\frac{\epsilon}{2 \max |\phi(x)|,|\phi(y)|}
$$

and

$$
\left|f\left(\frac{\alpha_{n}}{2^{n}}\right)-f(\lambda)\right| \leq \frac{\epsilon}{2}
$$

Thus,
$f(\lambda) \leq f\left(\frac{\alpha_{n}}{2^{n}}\right)+\frac{\epsilon}{2} \leq \frac{\alpha_{n}}{2^{n}} \phi(x)+\left(1-\frac{\alpha_{n}}{2^{n}}\right) \phi(y)+\frac{\epsilon}{2} \leq \lambda \phi(x)+(1-\lambda) \phi(y)+\epsilon$.
Since our ϵ was arbitrarily chosen, we are done.

[^0]: Date: October 28, 2013.

