PROBLEM SET X: PROBLEMS (3, 4)

PATRICK RYAN

Problem 1. Let V be a Banach space. Show that the dimension of V is either finite or uncountable (that is, V does not have a countably infinite basis).

Proof. Let V be a Banach space, and suppose that it has a countably infinite basis $\{v_i\}_{i>0}$. Next, consider the subsets $V_n = \mathcal{S}(v_1, \ldots, v_n)$, which are finite dimensional subspaces of V. It is clear that each subspace is closed in V.

Now we show that V_n is nowhere dense in V. Consider any $\alpha \in V_n$ and $\epsilon > 0$. Then the open ball $B_{\epsilon}(\alpha)$ contains the element

$$\left(\alpha + \frac{\epsilon}{2 \left\| v_{n+1} \right\|} v_{n+1} \right),\,$$

which is not an element of V_n . Hence, each $V_n = \overline{V_n}$ is nowhere dense in V.

Since each V_n is closed an nowhere dense in V, the complements, $(V_n)^c$, are open and dense in V. Applying the Baire Category Theorem, the set $\bigcap_{n>0} (V_n)^c$ is dense in V, i.e.,

$$\left(\bigcap_{n>0} \left(V_n\right)^c\right)^c = \bigcup_{n>0} V_n = V$$

is nowhere dense in V. Thus we have a contradiction, and we are done.

Problem 2. Let $E \subseteq \mathbb{R}^n$ be a measurable set with $0 < \mu(E) < \infty$. Let us regard $L^1(E)$ as a metric space, and $L^2(E)$ as a subset of $L^1(E)$. Show that $L^2(E)$ is meagre (that is, it is a countable union of nowhere dense subsets of $L^1(E)$).

Proof. Consider the sets

$$\mathcal{S}_{n} = \left\{ f \in L^{1}(E) : \int_{E} \left| f \right|^{2} > n \right\}$$

and let $(\mathcal{S}_n)^c$ be its complement. Then we may write

$$L^{2}(E) = \bigcup_{n} \left(\mathcal{S}_{n} \right)^{c},$$

as every element of $L^{2}(E)$ must have square integral bounded by n. It suffices to prove that S_{n} is dense and open for every n, as this implies that each $(S_{n})^{c}$ is nowhere dense.

Let $h \in L^1(E) / \mathcal{S}_n$ such that

$$\int_E |h|^2 \le n$$

Date: December 1, 2013.

We wish to show that h is in the closure of S_n with respect to the L^1 -norm. That is, there is a sequence $\{f_k\}$ in S_n such that

$$\lim_{k \to \infty} \|f_k - h\|_{L^1} = 0$$

Since we have $\mu(E) > 0$, E has a sequence of subsets $\{E_k\}$ such that $\mu(E_k) = \mu(E) / (k^{3/2})$. Define

$$f_k = \begin{cases} h + \sqrt{n} \cdot \sqrt{k} & \text{for } x \in E_k, \\ h & \text{for } x \in E - E_k \end{cases}$$

Then we have $f_k \in L^1(E)$ since

$$\int_{E} |f_{k}| = \int_{E} |h| + \sqrt{n} \cdot \left(\mu\left(E\right)/\sqrt{k}\right).$$

Since $k^{-1/2} \to 0$, we have $f_k \to h$ with respect to the L^1 -norm. However,

$$\int_{E} |f_{k}|^{2} = \int_{E} |h|^{2} + \left(\mu(E)\sqrt{n}/\sqrt{k}\right) \int_{E} |h| + n\left(\mu(E)\sqrt{k}\right) > n.$$

Thus, $f_k \in \mathcal{S}_n$. Hence, \mathcal{S}_n dense in $L^1(E)$.

Now we show the openness of S_n to complete the proof. Consider f bounded. For any $f \in S_n$, write

$$f_{\xi} = \begin{cases} f & \text{for } |f| < \xi, \\ 0 & \text{else} \end{cases}$$

Then there exists some ξ such that

$$\int_{E} \left|f\right|^{2} > n \Longrightarrow \int_{E} \left|f_{\xi}\right|^{2} > n.$$

Consider the support of f_{ξ} . For all $h \in L^1(E)$ such that $\|h\|_{\mathrm{supp}(f_{\xi})} - f_{\xi}\|_{L^1} < \epsilon$, we will have $h\|_{\mathrm{supp}(f_{\xi})} \in S_n$. This allows us to demonstrate

$$\|h - f\|_{L^1} < \epsilon \Longrightarrow \|h|_{\operatorname{supp}(f_{\xi})} - f_{\xi}\|_{L^1} < \epsilon \Longrightarrow h|_{\operatorname{supp}(f_{\xi})} \in \mathcal{S}_n \Longrightarrow h \in \mathcal{S}_n.$$

Thus, we replace f by f_{ξ} and E by supp (f_{ξ}) . That is, we take f bounded by ξ . Finally, write h such that $||h - f|| < \epsilon$, hence

$$\int_{E} |h|^{2} \ge \int_{E} |f|^{2} - 2 \int_{E} |f(h-f)| + \int_{E} |h-f|^{2} \ge \int_{E} |f|^{2} - 2 \int_{E} |f(h-f)| > n - 2\xi\epsilon.$$
Thus, we have \mathcal{S}_{e} is dense and open for every n , which implies that

Thus, we have S_n is dense and open for every n, which implies that

$$L^{2}(E) = \bigcup_{n} \left(\mathcal{S}_{n} \right)^{c}$$

is nowhere dense, i.e., $L^{2}(E)$ is meagre.