PROBLEM SET VII: PROBLEMS (1, 2)

PATRICK RYAN

Problem 1. Let $V_{0}, V_{1}, V_{2}, V_{3}, \ldots$ be real vector spaces with norms

$$
\|\bullet\|_{n}: V_{n} \rightarrow \mathbb{R}_{\geq 0}
$$

Given an element $\vec{v}=\left(v_{n}\right)_{n \geq 0} \in \Pi_{n \geq 0} V_{n}$, let

$$
\|\vec{v}\|=\sum_{n \geq 0}\left\|v_{n}\right\|_{n} \in \mathbb{R}_{\geq 0} \cup\{\infty\}
$$

Let $V \subseteq \Pi_{n \geq 0} V_{n}$ be the subset consisting of those elements \vec{v} such that $\|\vec{v}\|<\infty$. Show that \bar{V} is a real vector space and that $\vec{v} \mapsto\|\vec{v}\|$ is a norm on V. If each V_{n} is a Banach space, show that V is a Banach space. We will refer to V as the ℓ^{1}-sum of the Banach spaces $\left\{V_{n}\right\}_{n \geq 0}$.
Proof. First we show that V is a real normed vector space. Let $\vec{v}, \vec{w} \in V$ and $\lambda \in \mathbb{R}$. We may define

$$
\vec{v}+\vec{w}=\left(v_{n}+w_{n}\right)_{n \geq 0}, \quad \lambda \vec{v}=\left(\lambda \vec{v}_{n}\right)_{n \geq 0}
$$

which clearly induce a vector space structure on V.
Next we show that $\|\cdot\|$ is a norm. Definitionally, we have that $\|\vec{v}\|=0$ if and only if $\left\|v_{n}\right\|_{n}=0$ for all n, which is precisely when $\vec{v}=0$. Next, we see

$$
\lambda\|\vec{v}\|=\sum_{n \geq 0} \lambda\left\|v_{n}\right\|_{n}=\sum_{n \geq 0}\left\|\lambda v_{n}\right\|_{n}=\|\lambda \vec{v}\|
$$

Similarly, the Triangle Inequality holds, since it holds on each component of the sum. Thus, we have that $\|\cdot\|$ is a norm.

Now, if each V_{n} is a Banach space, then we wish to prove that V is a Banach space. Let v_{i} be a Cauchy sequence in V. Namely, for all $\epsilon>0$, there exists some N such that for all $j, k>N$ implies $\left\|v_{j}-v_{k}\right\|<\epsilon$. This implies that for $v_{i}=\left(v_{n, i}\right)_{n \geq 0}$, each sequence $v_{n, i}$ is Cauchy. Since each V_{n} is a Banach space,

$$
\lim _{i \rightarrow \infty} v_{n, i}=v_{n} \in V_{n}
$$

then

$$
v=\left(v_{n}\right)_{n \geq 0}=\lim _{i \rightarrow \infty} v_{i}
$$

Now we must show that $v \in V$; equivalently, $\|v\|<\infty$. However, we have, for $i>N$,

$$
\left\|v_{n, i}-v_{n}\right\|_{n}<\epsilon_{n}
$$

and $\sum_{n} \epsilon_{n}<\epsilon$ as the sequence is Cauchy. Thus, for $i>N$,

$$
\|v\|-\left\|v_{i}\right\| \leq\left\|v-v_{i}\right\|<\epsilon \Longrightarrow\|v\|<\left\|v_{i}\right\|+\epsilon<\infty
$$

as desired.

[^0]Problem 2. Suppose we are given a sequence $E_{0}, E_{1}, E_{2}, \ldots \subseteq \mathbb{R}^{m}$ of pairwise disjoint measurable subsets of \mathbb{R}^{m}. Let $E=\bigcup E_{n}$. Show that $L^{1}(E)$ is isomorphic to the ℓ^{1}-sum of the Banach spaces $L^{1}\left(E_{n}\right)$.
Proof. For brevity we denote the ℓ^{1}-sum of the $L^{1}\left(E_{n}\right)$ by Λ. We define the map $\varphi: L^{1}(E) \rightarrow \Lambda$ by

$$
\varphi(f)=\left(\left.f\right|_{E_{n}}\right)_{n \geq 0}
$$

Then we have

$$
\|\varphi(f)\|_{\ell^{1}}=\sum_{n \geq 0}\left\|\left(\left.f\right|_{E_{n}}\right)\right\|_{L^{1}\left(E_{n}\right)}=\sum_{n \geq 0} \int_{E_{n}}\left|\left(\left.f\right|_{E_{n}}\right)\right|=\int_{E}|f|=\|f\|_{L^{1}(E)}<\infty
$$

so our map is well-defined and preserves norms on $L^{1}(E)$ and Λ.
Now let us define $\rho: \Lambda \rightarrow L^{1}(E)$ by

$$
\rho\left(\left(f_{n}\right)_{n \geq 0}\right)=f_{n}(x)
$$

for $x \in E_{n}$. This map is well-defined by the disjointness of the E_{n} and
$\left\|\rho\left(\left(f_{n}\right)_{n \geq 0}\right)\right\|_{L^{1}(E)}=\int_{E}\left|\rho\left(\left(f_{n}\right)_{n \geq 0}\right)\right|=\sum_{n \geq 0} \int_{E_{n}}\left|f_{n}\right|=\sum_{n \geq 0}\left\|f_{n}\right\|_{L^{1}\left(E_{n}\right)}=\left\|\left(f_{n}\right)_{n \geq 0}\right\|_{\ell^{1}}<\infty$.
Thus, ρ is an inverse to φ, so φ is an isomorphism of Banach spaces. In particular, it is an isometric isomorphism

[^0]: Date: November 4, 2013.

