PROBLEM SET VII: PROBLEMS (1, 2)

PATRICK RYAN

Problem 1. Let $V_0, V_1, V_2, V_3, \dots$ be real vector spaces with norms

$$\|\bullet\|_n: V_n \to \mathbb{R}_{\geq 0}.$$

Given an element $\vec{v} = (v_n)_{n>0} \in \prod_{n\geq 0} V_n$, let

$$\|\vec{v}\| = \sum_{n \ge 0} \|v_n\|_n \in \mathbb{R}_{\ge 0} \cup \{\infty\}$$

Let $V \subseteq \prod_{n \ge 0} V_n$ be the subset consisting of those elements \vec{v} such that $\|\vec{v}\| < \infty$. Show that V is a real vector space and that $\vec{v} \mapsto \|\vec{v}\|$ is a norm on V. If each V_n is a Banach space, show that V is a Banach space. We will refer to V as the ℓ^1 -sum of the Banach spaces $\{V_n\}_{n>0}$.

Proof. First we show that V is a real normed vector space. Let $\vec{v}, \vec{w} \in V$ and $\lambda \in \mathbb{R}$. We may define

$$\vec{v} + \vec{w} = (v_n + w_n)_{n \ge 0}, \quad \lambda \vec{v} = (\lambda \vec{v}_n)_{n \ge 0},$$

which clearly induce a vector space structure on V.

Next we show that $\|\cdot\|$ is a norm. Definitionally, we have that $\|\vec{v}\| = 0$ if and only if $\|v_n\|_n = 0$ for all n, which is precisely when $\vec{v} = 0$. Next, we see

$$\lambda \|\vec{v}\| = \sum_{n \ge 0} \lambda \|v_n\|_n = \sum_{n \ge 0} \|\lambda v_n\|_n = \|\lambda \vec{v}\|.$$

Similarly, the Triangle Inequality holds, since it holds on each component of the sum. Thus, we have that $\|\cdot\|$ is a norm.

Now, if each V_n is a Banach space, then we wish to prove that V is a Banach space. Let v_i be a Cauchy sequence in V. Namely, for all $\epsilon > 0$, there exists some N such that for all j, k > N implies $||v_j - v_k|| < \epsilon$. This implies that for $v_i = (v_{n,i})_{n \ge 0}$, each sequence $v_{n,i}$ is Cauchy. Since each V_n is a Banach space,

$$\lim_{i \to \infty} v_{n,i} = v_n \in V_n;$$

then

$$v = (v_n)_{n \ge 0} = \lim_{i \to \infty} v_i.$$

Now we must show that $v \in V$; equivalently, $||v|| < \infty$. However, we have, for i > N,

$$\left\|v_{n,i} - v_n\right\|_n < \epsilon_n$$

and $\sum_{n} \epsilon_n < \epsilon$ as the sequence is Cauchy. Thus, for i > N,

$$||v|| - ||v_i|| \le ||v - v_i|| < \epsilon \Longrightarrow ||v|| < ||v_i|| + \epsilon < \infty,$$

as desired.

Date: November 4, 2013.

Problem 2. Suppose we are given a sequence $E_0, E_1, E_2, ... \subseteq \mathbb{R}^m$ of pairwise disjoint measurable subsets of \mathbb{R}^m . Let $E = \bigcup E_n$. Show that $L^1(E)$ is isomorphic to the ℓ^1 -sum of the Banach spaces $L^1(E_n)$.

Proof. For brevity we denote the ℓ^1 -sum of the $L^1(E_n)$ by Λ . We define the map $\varphi: L^1(E) \to \Lambda$ by

$$\varphi(f) = (f \mid_{E_n})_{n > 0}.$$

Then we have

$$\|\varphi(f)\|_{\ell^{1}} = \sum_{n \ge 0} \|(f|_{E_{n}})\|_{L^{1}(E_{n})} = \sum_{n \ge 0} \int_{E_{n}} |(f|_{E_{n}})| = \int_{E} |f| = \|f\|_{L^{1}(E)} < \infty,$$

so our map is well-defined and preserves norms on $L^{1}(E)$ and Λ .

Now let us define $\rho : \Lambda \to L^1(E)$ by

$$\rho\left((f_n)_{n\geq 0}\right) = f_n\left(x\right)$$

for $x \in E_n$. This map is well-defined by the disjointness of the E_n and

$$\left\|\rho\left((f_n)_{n\geq 0}\right)\right\|_{L^1(E)} = \int_E \left|\rho\left((f_n)_{n\geq 0}\right)\right| = \sum_{n\geq 0} \int_{E_n} |f_n| = \sum_{n\geq 0} \|f_n\|_{L^1(E_n)} = \left\|(f_n)_{n\geq 0}\right\|_{\ell^1} < \infty$$

Thus, ρ is an inverse to φ , so φ is an isomorphism of Banach spaces. In particular, it is an isometric isomorphism