
Math 114 Assignment One Solutions Stephen Mackereth

Problem One.

Let f : [0, π] → R be a continuous function such that f(0) = f(π) = 0, and define real
numbers a1, a2, . . . by the formula

an =
2

π

∫ π

0

sin(nx)f(x)dx.

Show that the sum
∑

n>0(an)2 converges (hint: compare the sum with the integral
∫ π
0
f(x)2dx).

Proof. By way of motivation, we would somehow like to use the decomposition of f(x)
as a Fourier series

∑∞
n=1 an sinnx. Even though we haven’t proven anything about the

convergence of the Fourier series, we might nevertheless guess that f(x) is well-approximated
by the partial sums

∑N
n=1 an sinnx for large N , at least as far as integrals are concerned

(though perhaps not pointwise). This means that the inequality∫ π

0

(
f(x)−

N∑
n=1

an sinnx

)2

dx ≥ 0

should be pretty sharp (at least when N is large). It may therefore be useful to us.

Note that this integral is finite-valued: f is continuous and therefore achieves some maximum
M on a compact domain, so that M2 +

∑N
n=1 a

2
n is a bound on the absolute value of the

integrand. Similar arguments will ensure that all subsequent integrals are finite.

Anyway, expanding the brackets, the above inequality is equivalent to∫ π

0

f(x)2dx− 2

∫ π

0

f(x)
N∑
n=1

an sinnxdx+

∫ π

0

(
N∑
n=1

an sinnx

)2

dx ≥ 0

or, using that Riemann integration commutes with finite summation of integrable functions,

2
N∑
n=1

an

∫ π

0

f(x) sinnxdx−
N∑

m,n=1

aman

∫ π

0

sinmx sinnxdx ≤
∫ π

0

f(x)2dx.

But an = 2
π

∫ π
0
f(x) sinnxdx, so we can rewrite the first term on the LHS as

π

N∑
n=1

a2n

and it was shown in class that∫ π

0

sinmx sinnxdx =

{
0 if m 6= n
π
2

if m = n.

Therefore, we have

π
N∑
n=1

a2n −
π

2

N∑
n=1

a2n ≤
∫ π

0

f(x)2dx

N∑
n=1

a2n ≤
2

π

∫ π

0

f(x)2dx

1
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for any N . Thus
∑∞

n=1 a
2
n ≤ 2

π

∫ π
0
f(x)2dx ≤ 2M2, where |f(x)| ≤ M on x ∈ [0, π]. So by

the monotone convergence theorem in R, it follows that
∑∞

n=1 a
2
n converges. �

Remark. This problem is a special case of Parseval’s identity, which we’ll cover later in this
class. This proof imitates the proof of Bessel’s inequality. Those of you who defined and used
an inner product on the space of continuous functions [0, π] → R having f(0) = f(π) = 0
accomplished essentially the same proof, but more sophisticatedly.

Remark. We can’t assume results about the convergence of Fourier series at this point in
the course. It’s also not clear whether these integrals commute with infinite sums.

Problem Two.

By brute force:

an =
2

π

∫ 3π/4

π/4

sinnxdx

=
2

πn

(
cos

πn

4
− cos

3πn

4

)
=

2

πn

(
cos
(πn

2
− πn

4

)
− cos

(πn
2

+
πn

4

))
=

4

πn
sin

πn

2
sin

πn

4
.

The usefulness of expressing the answer in this form becomes apparent when we try to
calculate g(π

4
) and g(3π

4
).

g(x) =
∑
n>0

4

πn
sin

πn

2
sin

πn

4
sinnx

=⇒ g

(
1

4

)
=
∑
n>0

4

πn
sin

πn

2
sin2 πn

4

and

g

(
3

4

)
=
∑
n>0

4

πn
sin

πn

2
sin

πn

4
sin

3πn

4
.

In each case, sin πn
2

= 0 whenever n is even. Considering only the terms where n = 2k − 1
is odd, the first sum yields

g

(
1

4

)
=
∑
k>0

4

π(2k − 1)
(−1)k sin2 π(2k − 1)

4

=
∑
k>0

4

π(2k − 1)

(−1)k

2

=
2

π

π

4

=
1

2

2
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and likewise the second sum yields

g

(
3

4

)
=
∑
k>0

4

π(2k − 1)
(−1)k sin

π(2k − 1)

4
sin

3π(2k − 1)

4

= · · ·

=
1

2
.

Remark. The formulae that convert between trigonometric sums and products are properly
called the prosthaphaeretic formulae. Historically they were very important in navigation
before the invention of logarithms. They were used to multiply large numbers quickly, much
like the formula log ab = log a+ log b.

Problem Three.

I will generalise Prof Lurie’s proof from class that the line y = x has outer measure zero in
R2. The idea of that proof was to chop up the line segment from (0, 0) to (1, 1) into m pieces
of equal length, and put a box of sidelength 1

m
at the endpoints of each piece. We will do

something similar.

Let {v1, v2, · · · , vk} be an orthonormal basis for the k-dimensional linear subspace V ⊂ Rn.

It suffices to show that the k-dimensional parallelepiped P spanned by {v1, v2, · · · , vk} has
outer measure m∗(P ) = 0. V can then be expressed as a countable union of translates of P .
Since outer measure is translation-invariant, we will then have by countable subadditivity
that m∗(V ) = 0 as well.

Here are some collections of boxes that cover P .

Collection 0.
C0 = {B(0)

i1i2···ik : 0 ≤ i1, i2, · · · , ik ≤ 1}

where B
(0)
i1i2···ik is an open n-box of sidelength 2 centred at the vertex of the parallelepiped

given by
∑k

α=1 iαvα.

This is a cover of P , because the distance between any point in P and the centre of some
box is no more than ||1

2

∑k
α=1 vα|| ≤

1
2k

∑k
α=1 ||vα|| ≤

k
2k
< 1, and the open box of sidelength

2 contains the open ball of radius 1.

The total volume of C0 is the volume of each box times the number of boxes, or 2n ·2k = 2n+k.

Collection 1.
C1 = {B(1)

i1i2···ik : 0 ≤ i1, i2, · · · , ik ≤ 2}

where B
(1)
i1i2···ik is an open n-box of sidelength 1 centred at

∑k
α=1

1
2
iαvα. In other words we

have put in all the midpoints of the v’s, together with sums of midpoints. This is a cover by
the same argument as above.

The total volume of C1 is 1n · 3k = 3k.
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Collection 2.
C2 = {B(2)

i1i2···ik : 0 ≤ i1, i2, · · · , ik ≤ 3}

where B
(2)
i1i2···ik is an open n-box of sidelength 2

3
centred at

∑k
α=1

1
3
iαvα.

The total volume of C2 is
(
2
3

)n · 4k = 2n+2k

3n
.

...

Collection m.

To cut a long and exceedingly painful story short,

Cm = {B(m)
i1i2···ik : 0 ≤ i1, i2, · · · , ik ≤ m+ 1}

where B
(m)
i1i2···ik is an open n-box of sidelength 2

m+1
centred at

∑k
α=1

1
m+1

iαvα.

The total volume of Cm is
(

2
m+1

)n · (m+ 2)k = 2n (m+2)k

(m+1)n
which can be made arbitrarily small

as m→∞.

Therefore m∗(P ) = 0 and so m∗(V ) = 0. �

Remark. Sorry this proof was so messy. Hopefully you get the idea.
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